DISCRETE COMPACTNESS FOR THE p-VERSION OF DISCRETE DIFFERENTIAL FORMS

被引:16
作者
Boffi, Daniele [1 ]
Costabel, Martin [2 ]
Dauge, Monique [2 ]
Demkowicz, Leszek [3 ]
Hiptmair, Ralf [4 ]
机构
[1] Univ Pavia, Dipartimento Matemat F Casorati, I-27100 Pavia, Italy
[2] Univ Rennes 1, IRMAR, F-35042 Rennes, France
[3] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[4] ETH, SAM, CH-8092 Zurich, Switzerland
关键词
eigenvalue problem; discrete differential forms; discrete compactness; Maxwell equations; p-version; edge elements; smoothed Poincare lifting; ELEMENT EXTERIOR CALCULUS; MIXED FINITE-ELEMENTS; PROJECTION-BASED INTERPOLATION; MAXWELL EQUATIONS; DIMENSIONS; WEIGHTED REGULARIZATION; SPECTRAL APPROXIMATION; EDGE ELEMENTS; CONVERGENCE; EIGENVALUES;
D O I
10.1137/090772629
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the discrete compactness property for a wide class of p finite element approximations of nonelliptic variational eigenvalue problems in two and three space dimensions. In a very general framework, we find sufficient conditions for the p-version of a generalized discrete compactness property, which is formulated in the setting of discrete differential forms of order l on a polyhedral domain in R-d (0 < l < d). One of the main tools for the analysis is a recently introduced smoothed Poincare lifting operator [M. Costabel and A. McIntosh, Math. Z., 265 (2010), pp. 297-320]. In the case l = 1 our analysis shows that several widely used families of edge finite elements satisfy the discrete compactness property in p and hence provide convergent solutions to the Maxwell eigenvalue problem. In particular, Nedelec elements on triangles and tetrahedra (first and second kind) and on parallelograms and parallelepipeds (first kind) are covered by our theory.
引用
收藏
页码:135 / 158
页数:24
相关论文
共 49 条
[1]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[2]  
2-B
[3]  
[Anonymous], P I ELECT ENG A
[4]  
Anselone P. M., 1971, Collectively Compact Operator Approximation Theory and Applications to Integral Equations
[5]  
Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
[6]   FINITE ELEMENT EXTERIOR CALCULUS FROM HODGE THEORY TO NUMERICAL STABILITY [J].
Arnold, Douglas N. ;
Falk, Richard S. ;
Winther, Ragnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 47 (02) :281-354
[7]  
Arnold DouglasN., 2002, Proceedings of the International Congress of Mathematicians, V1, P137
[8]   CONVERGENCE OF THE NATURAL hp-BEM FOR THE ELECTRIC FIELD INTEGRAL EQUATION ON POLYHEDRAL SURFACES [J].
Bespalov, A. ;
Heuer, N. ;
Hiptmair, R. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (04) :1518-1529
[9]   OPTIMAL ERROR ESTIMATION FOR H(curl)-CONFORMING p-INTERPOLATION IN TWO DIMENSIONS [J].
Bespalov, Alexei ;
Heuer, Norbert .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) :3977-3989
[10]   Computational models of electromagnetic resonators: Analysis of edge element approximation [J].
Boffi, D ;
Fernandes, P ;
Gastaldi, L ;
Perugia, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (04) :1264-1290