A Note on Optimal Constant Dimension Codes

被引:0
作者
Liao, Qunying [1 ]
Zhu, Juan [1 ]
机构
[1] Sichuan Normal Univ, Inst Math & Software Sci, Chengdu 610066, Sichuan, Peoples R China
关键词
Constant dimension code; dimension distance; lower bound; upper bound; CORRECTING CODES; SPACE;
D O I
10.1142/s0129054115500070
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study bounds for optimal constant dimension codes furl By the construction for constant dimension codes in [4], we improve some bounds on q-ary constant dimension codes in some cases. By combinatorial method, we show that there exists no optimal constant dimension code A(q)[n, 2 delta, k] meeting both Wang-Xing-Safavi-Naini-Bound and the maximal distance separate bound simultaneously.
引用
收藏
页码:143 / 152
页数:10
相关论文
共 10 条
[1]   PARTITIONS OF A VECTOR-SPACE [J].
BU, T .
DISCRETE MATHEMATICS, 1980, 31 (01) :79-83
[2]   Perfect byte-correcting codes [J].
Etzion, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (07) :3140-3146
[3]   Error-Correcting Codes in Projective Space [J].
Etzion, Tuvi ;
Vardy, Alexander .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (02) :1165-1173
[4]  
Ho T, 2003, 2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, P442
[5]   A random linear network coding approach to multicast [J].
Ho, Tracey ;
Medard, Muriel ;
Koetter, Ralf ;
Karger, David R. ;
Effros, Michelle ;
Shi, Jun ;
Leong, Ben .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (10) :4413-4430
[6]  
Koetter R., 2007, P IEEE INT S INF THE, P791
[7]  
MacWilliams F. J., 1981, THEORY ERROR CORRECT
[8]  
Tonchev V.D., 1998, HDB CODING THEORY
[9]   Linear authentication codes: Bounds and constructions [J].
Wang, HX ;
Xing, CP ;
Safavi-Naini, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (04) :866-872
[10]   Johnson type bounds on constant dimension codes [J].
Xia, Shu-Tao ;
Fu, Fang-Wei .
DESIGNS CODES AND CRYPTOGRAPHY, 2009, 50 (02) :163-172