Numerical solution of the free boundary Bernoulli problem using a level set formulation

被引:22
作者
Bouchon, F [1 ]
Clain, S [1 ]
Touzani, R [1 ]
机构
[1] Univ Clermont Ferrand, Lab Math Appl, CNRS, UMR 6620, F-63177 Clermont Ferrand, France
关键词
free boundary problem; Bernoulli problem; level sets;
D O I
10.1016/j.cma.2004.09.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a numerical method based on a level set formulation to solve the Bernoulli problem. The formulation uses time as a parameter of boundary evolution. The level set formulation enables to consider nonconnected domains. Numerical experiments show the efficiency of the method if boundary conditions are handled accurately. In particular, the case of multiple solutions is treated. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:3934 / 3948
页数:15
相关论文
共 11 条
[1]  
BEURLING A, 1957, P SEM AN FUNCT PRINC, V1, P248
[2]  
Bjorck A., 1979, BIT (Nordisk Tidskrift for Informationsbehandling), V19, P145, DOI 10.1007/BF01930845
[3]  
CROUZEIX M, 1991, EUR J MECH B-FLUID, V10, P527
[4]  
DESCLOUX J, 1991, EUR J MECH B-FLUID, V10, P513
[5]  
Flucher M, 1997, J REINE ANGEW MATH, V486, P165
[6]  
Kärkkäinen KT, 1999, INT J NUMER METH ENG, V44, P1079, DOI 10.1002/(SICI)1097-0207(19990320)44:8<1079::AID-NME543>3.0.CO
[7]  
2-I
[8]  
SETHIAN J. A., 1999, LEVEL SET METHODS FA
[9]   The numerical solution of Laplace's equation [J].
Shortley, GH ;
Weller, R .
JOURNAL OF APPLIED PHYSICS, 1938, 9 (05) :334-348
[10]   From finite differences to finite elements -: A short history of numerical analysis of partial differential equations [J].
Thomée, V .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 128 (1-2) :1-54