Remote estimation of colored dissolved organic matter and chlorophyll-a in Lake Huron using Sentinel-2 measurements

被引:85
|
作者
Chen, Jiang [1 ]
Zhu, Weining [1 ]
Tian, Yong Q. [2 ]
Yu, Qian [3 ]
Zheng, Yuhan [1 ]
Huang, Litong [1 ]
机构
[1] Zhejiang Univ, Ocean Coll, Hangzhou, Zhejiang, Peoples R China
[2] Cent Michigan Univ, Inst Great Lakes Res, Dept Geog, Mt Pleasant, MI 48859 USA
[3] Univ Massachusetts, Dept Geosci, Amherst, MA 01003 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
colored dissolved organic matter; chlorophyll-a; remote sensing; Sentinel-2; Lake Huron; NEURAL-NETWORK MODEL; INLAND WATERS; ALGORITHMS; CARBON; REFLECTANCE; ABSORPTION; QUALITY; IMAGERY;
D O I
10.1117/1.JRS.11.036007
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Colored dissolved organic matter ( CDOM) and chlorophyll-a (Chla) are important water quality parameters and play crucial roles in aquatic environment. Remote sensing of CDOM and Chla concentrations for inland lakes is often limited by low spatial resolution. The newly launched Sentinel-2 satellite is equipped with high spatial resolution (10, 20, and 60 m). Empirical band ratio models were developed to derive CDOM and Chla concentrations in Lake Huron. The leave-one-out cross-validation method was used for model calibration and validation. The best CDOM retrieval algorithm is a B3/B5 model with accuracy coefficient of determination (R-2) = 0.884, root-mean-squared error (RMSE) = 0.731 m(-1), relative root-meansquared error (RRMSE) = 28.02%, and bias = -0.1 m(-1). The best Chla retrieval algorithm is a B5/B4 model with accuracy R-2 = 0.49, RMSE = 9.972 mg/m(3), RRMSE = 48.47%, and bias = -0.116 mg/m(3). Neural network models were further implemented to improve inversion accuracy. The applications of the two best band ratio models to Sentinel-2 imagery with 10 m x 10 m pixel size presented the high potential of the sensor for monitoring water quality of inland lakes. (C) 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Remote Analysis of the Chlorophyll-a Concentration Using Sentinel-2 MSI Images in a Semiarid Environment in Northeastern Brazil
    Aranha, Thais R. Benevides T.
    Martinez, Jean-Michel
    Souza, Enio P.
    Barros, Mario U. G.
    Martins, Eduardo Savio P. R.
    WATER, 2022, 14 (03)
  • [12] Estimation of Colored Dissolved Organic Matter From Landsat-8 Imagery for Complex Inland Water: Case Study of Lake Huron
    Chen, Jiang
    Zhu, Wei-Ning
    Tian, Yong Q.
    Yu, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (04): : 2201 - 2212
  • [13] Quality control based Chlorophyll-a estimation with two-band and three-band algorithms using Sentinel-2 MSI data in a complex inland lake, China
    Liu, Nan
    Qing, Song
    Wang, Fang
    Diao, Ruixiang
    Yue, Yalei
    GEOCARTO INTERNATIONAL, 2022, 37 (27) : 18094 - 18115
  • [14] Improving Chlorophyll-A Estimation From Sentinel-2 (MSI) in the Barents Sea Using Machine Learning
    Asim, Muhammad
    Brekke, Camilla
    Mahmood, Arif
    Eltoft, Torbjorn
    Reigstad, Marit
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 5529 - 5549
  • [15] Estimation of Chlorophyll-a Concentrations in Small Water Bodies: Comparison of Fused Gaofen-6 and Sentinel-2 Sensors
    Shi, Jiarui
    Shen, Qian
    Yao, Yue
    Li, Junsheng
    Chen, Fu
    Wang, Ru
    Xu, Wenting
    Gao, Zuoyan
    Wang, Libing
    Zhou, Yuting
    REMOTE SENSING, 2022, 14 (01)
  • [16] Remote sensing water quality inversion using sparse representation: Chlorophyll-a retrieval from Sentinel-2 MSI data
    Chu, Hone-Jay
    He, Yu-Chen
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2023, 31
  • [17] Quantification of chlorophyll-a in inland waters by remote sensing algorithm based on modified equivalent spectra of Sentinel-2
    Pan, Wenbin
    Yu, Fei
    Li, Jialin
    Li, Chunqiang
    Ye, Ming
    ECOLOGICAL INFORMATICS, 2025, 87
  • [18] Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and Sentinel-2 MSI Sensors
    Poddar, Shukla
    Chacko, Neethu
    Swain, Debadatta
    FRONTIERS IN MARINE SCIENCE, 2019, 6
  • [19] CALIBRATION AND VALIDATION OF ALGORITHMS FOR THE ESTIMATION OF CHLOROPHYLL-A IN INLAND WATERS WITH SENTINEL-2
    Pereira-Sandoval, Marcela
    Ruiz-Verdu, Antonio
    Tenjo, Carolina
    Delegido, Jesus
    Urrego, Patricia
    Pena, Ramon
    Vicente, Eduardo
    Soria, Juan
    Soria, Javier
    Moreno, Jose
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9276 - 9279
  • [20] Evaluation of Sentinel-2 Based Chlorophyll-a Estimation in a Small-Scale Reservoir: Assessing Accuracy and Availability
    Jang, Wonjin
    Kim, Jinuk
    Kim, Jin Hwi
    Shin, Jae-Ki
    Chon, Kangmin
    Kang, Eue Tae
    Park, Yongeun
    Kim, Seongjoon
    REMOTE SENSING, 2024, 16 (02)