Interfacial bond strengths of steel reinforcing bars embedded in a high-performance fiber-reinforced cementitious composite (HPFRCC) are investigated in this paper. Out of 303 pullout specimens, 48 HPFRCC and 3 normal concrete specimens were tested without any heat treatment, and 240 HPFRCC and 12 normal concrete specimens were heated at 200, 400, 600, or 800 degrees C in a furnace for 2 h prior to testing. The effects of bar shape, diameter, and length embedded in HPFRCC on the bond strength of HPFRCC specimens were investigated. The bond strength decreased with the heating temperature and with the size and embedded length of steel bars. It was reduced further when the heated specimens were cooled in water instead of air. It was disaggregated into chemical adhesion and mechanical interlock from a comparative study of plain and deformed bars. The mechanical properties and microstructures of HPFRCC specimens before and after heat treatment were compared to understand the mechanisms of interfacial bonding degradation due to heat treatment.
机构:
Zhengzhou Univ, Res Ctr New Style Bldg Mat & Struct, Zhengzhou 450002, Peoples R ChinaZhengzhou Univ, Res Ctr New Style Bldg Mat & Struct, Zhengzhou 450002, Peoples R China
Li, Han
Gao, Danying
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Res Ctr New Style Bldg Mat & Struct, Zhengzhou 450002, Peoples R ChinaZhengzhou Univ, Res Ctr New Style Bldg Mat & Struct, Zhengzhou 450002, Peoples R China
Gao, Danying
FRONTIERS OF GREEN BUILDING, MATERIALS AND CIVIL ENGINEERING, PTS 1-8,
2011,
71-78
: 1695
-
1702