Big data: More than big data sets

被引:18
作者
Cobb, Adrienne N. [1 ,2 ]
Benjamin, Andrew J. [3 ]
Huang, Erich S. [4 ,5 ,6 ]
Kuo, Paul C. [7 ]
机构
[1] Loyola Univ Med Ctr, Dept Surg, Maywood, IL 60153 USA
[2] Loyola Univ Chicago, Dept Surg, MAP Surg Analyt 1, Maywood, IL USA
[3] Univ Chicago, Med Ctr, Dept Surg, Chicago, IL 60637 USA
[4] Duke Univ, Inst Genome Sci & Policy, Durham, NC USA
[5] Duke Univ, Sch Med, Dept Surg, Durham, NC USA
[6] Sage Bionetworks, 1100 Fairview Ave North, Seattle, WA USA
[7] Univ S Florida, Dept Surg, Tampa, FL 33620 USA
关键词
D O I
10.1016/j.surg.2018.06.022
中图分类号
R61 [外科手术学];
学科分类号
摘要
The term big data has been popularized over the past decade and is often used to refer to data sets that are too large or complex to be analyzed by traditional means. Although the term has been utilized for some time in business and engineering, the concept of big data is relatively new to medicine. The reception from the medical community has been mixed; however, the widespread utilization of electronic health records in the United States, the creation of large clinical data sets and national registries that capture information on numerous vectors affecting healthcare delivery and patient outcomes, and the sequencing of the human genome are all opportunities to leverage big data. This review was inspired by a lively panel discussion on big data that took place at the 75th Central Surgical Association Annual Meeting. The authors' aim was to describe big data, the methodologies used to analyze big data, and their practical clinical application. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:640 / 642
页数:3
相关论文
共 12 条
[1]   Big Data and Machine Learning in Health Care [J].
Beam, Andrew L. ;
Kohane, Isaac S. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 319 (13) :1317-1318
[2]   Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards [J].
Churpek, Matthew M. ;
Yuen, Trevor C. ;
Winslow, Christopher ;
Meltzer, David O. ;
Kattan, Michael W. ;
Edelson, Dana P. .
CRITICAL CARE MEDICINE, 2016, 44 (02) :368-374
[3]   Towards automatic pulmonary nodule management in lung cancer screening with deep learning [J].
Ciompi, Francesco ;
Chung, Kaman ;
van Riel, Sarah J. ;
Setio, Arnaud Arindra Adiyoso ;
Gerke, Paul K. ;
Jacobs, Colin ;
Scholten, Ernst Th. ;
Schaefer-Prokop, Cornelia ;
Wille, Mathilde M. W. ;
Marchiano, Alfonso ;
Pastorino, Ugo ;
Prokop, Mathias ;
van Ginneken, Bram .
SCIENTIFIC REPORTS, 2017, 7
[4]   Machine Learning in Medicine [J].
Deo, Rahul C. .
CIRCULATION, 2015, 132 (20) :1920-1930
[5]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[6]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[7]   Support vector machines [J].
Hearst, MA .
IEEE INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1998, 13 (04) :18-21
[8]  
Liu Y., Detecting Cancer Metastases on Gigapixel Pathology Images
[9]   Systematic Analysis of Challenge-Driven Improvements in Molecular Prognostic Models for Breast Cancer [J].
Margolin, Adam A. ;
Bilal, Erhan ;
Huang, Erich ;
Norman, Thea C. ;
Ottestad, Lars ;
Mecham, Brigham H. ;
Sauerwine, Ben ;
Kellen, Michael R. ;
Mangravite, Lara M. ;
Furia, Matthew D. ;
Vollan, Hans Kristian Moen ;
Rueda, Oscar M. ;
Guinney, Justin ;
Deflaux, Nicole A. ;
Hoff, Bruce ;
Schildwachter, Xavier ;
Russnes, Hege G. ;
Park, Daehoon ;
Vang, Veronica O. ;
Pirtle, Tyler ;
Youseff, Lamia ;
Citro, Craig ;
Curtis, Christina ;
Kristensen, Vessela N. ;
Hellerstein, Joseph ;
Friend, Stephen H. ;
Stolovitzky, Gustavo ;
Aparicio, Samuel ;
Caldas, Carlos ;
Borresen-Dale, Anne-Lise .
SCIENCE TRANSLATIONAL MEDICINE, 2013, 5 (181)
[10]   Comparison of AdaBoost and Support Vector Machines for Detecting Alzheimer's Disease Through Automated Hippocampal Segmentation [J].
Morra, Jonathan H. ;
Tu, Zhuowen ;
Apostolova, Liana G. ;
Green, Amity E. ;
Toga, Arthur W. ;
Thompson, Paul M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (01) :30-43