This paper reports data for back-illuminated planar n-on-p HgCdTe electron-initiated avalanche photodiode (e-APD) 4 x 4 arrays with large unit cells (250 x 250 mu m(2)). The arrays were fabricated from p-type HgCdTe films grown by liquid phase epitaxy (LPE) on CdZnTe substrates. The arrays were bumpmounted to fanout boards and characterized in the back-illuminated mode. Gain increased exponentially with reverse bias voltage, and the gain versus bias curves were quite uniform from element to element. The maximum gain measured was 648 at -11.7 V for a cutoff wavelength of 4.06 mu m at 160 K. For the same reverse-bias voltage, the gains measured at 160 K for elements with two different cutoff wavelengths (3.54 mu m and 4.06 mu m at 160 K) show an exponential increase with increasing cutoff wavelength, in agreement with Beck's empirical model for gain versus voltage and cutoff wavelength in HgCdTe e-APDs. Spot scan data show that both the V = 0 response and the gain at V = -5.0 V are spatially uniform over the large junction area. To the best of our knowledge, these are the first spot scan data for avalanche gain ever reported for HgCdTe e-APDs. Capacitance versus voltage data are consistent with an ideal abrupt junction having a donor concentration equal to the indium concentration in the LPE film.