HgCdTe MWIR back-illuminated electron-initiated avalanche photodiode arrays

被引:58
作者
Reine, M. B.
Marciniec, J. W.
Wong, K. K.
Parodos, T.
Mullarkey, J. D.
Lamarre, P. A.
Tobin, S. P.
Gustavsen, K. A.
Williams, G. M.
机构
[1] BAE Syst, Lexington, MA 02421 USA
[2] Voxtel Inc, Beaverton, OR 97005 USA
关键词
HgCdTe; photodiode; avalanche photodiode; APD; infrared; detector;
D O I
10.1007/s11664-007-0172-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reports data for back-illuminated planar n-on-p HgCdTe electron-initiated avalanche photodiode (e-APD) 4 x 4 arrays with large unit cells (250 x 250 mu m(2)). The arrays were fabricated from p-type HgCdTe films grown by liquid phase epitaxy (LPE) on CdZnTe substrates. The arrays were bumpmounted to fanout boards and characterized in the back-illuminated mode. Gain increased exponentially with reverse bias voltage, and the gain versus bias curves were quite uniform from element to element. The maximum gain measured was 648 at -11.7 V for a cutoff wavelength of 4.06 mu m at 160 K. For the same reverse-bias voltage, the gains measured at 160 K for elements with two different cutoff wavelengths (3.54 mu m and 4.06 mu m at 160 K) show an exponential increase with increasing cutoff wavelength, in agreement with Beck's empirical model for gain versus voltage and cutoff wavelength in HgCdTe e-APDs. Spot scan data show that both the V = 0 response and the gain at V = -5.0 V are spatially uniform over the large junction area. To the best of our knowledge, these are the first spot scan data for avalanche gain ever reported for HgCdTe e-APDs. Capacitance versus voltage data are consistent with an ideal abrupt junction having a donor concentration equal to the indium concentration in the LPE film.
引用
收藏
页码:1059 / 1067
页数:9
相关论文
共 23 条
[1]   A low noise, laser-gated imaging system for long range target identification [J].
Baker, I ;
Duncan, S ;
Copley, J .
INFRARED TECHNOLOGY AND APPLICATIONS XXX, 2004, 5406 :133-144
[2]   The HgCdTe electron avalanche photodiode [J].
Beck, J. ;
Wan, C. ;
Kinch, M. ;
Robinson, J. ;
Mitra, P. ;
Scritchfield, R. ;
Ma, F. ;
Campbell, J. .
JOURNAL OF ELECTRONIC MATERIALS, 2006, 35 (06) :1166-1173
[3]   The HgCdTe electron avalanche photodiode [J].
Beck, J ;
Wan, C ;
Kinch, M ;
Robinson, J ;
Mitra, P ;
Scritchfield, R ;
Ma, F ;
Campbell, J .
INFRARED DETECTOR MATERIALS AND DEVICES, 2004, 5564 :44-53
[4]   MWIR HgCdTe avalanche photodiodes [J].
Beck, JD ;
Wan, CF ;
Kinch, MA ;
Robinson, JE .
MATERIALS FOR INFRARED DETECTORS, 2001, 4454 :188-197
[5]   Pulse position modulated (PPM) ground receiver design for optical communications from deep space [J].
Biswas, A ;
Vilnrotter, V ;
Farr, W ;
Fort, D ;
Sigman, E .
FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XIV, 2002, 4635 :224-235
[6]   Ground detectors for optical communications from deep space [J].
Biswas, A ;
Madden-Woods, B ;
Srinivasan, M ;
Vilnrotter, V ;
Farr, W .
FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XIV, 2002, 4635 :72-83
[7]   Epitaxial growth of HgCdTe 1.55 μm avalanche photodiodes by molecular-beam epitaxy [J].
de Lyon, TJ ;
Baumgratz, B ;
Chapman, G ;
Gordon, E ;
Hunter, AT ;
Jack, M ;
Jensen, JE ;
Johnson, W ;
Johs, B ;
Kosai, K ;
Larsen, W ;
Olson, GL ;
Sen, M ;
Walker, B .
PHOTODETECTORS: MATERIALS AND DEVICES IV, 1999, 3629 :256-267
[8]  
DEWAMES RE, 1989, 1989 WORKSH PHYS CHE
[9]  
DUY TN, 1987, MATER RES SOC S P, V90, P81
[10]   REVERSE BREAKDOWN IN LONG WAVELENGTH LATERAL COLLECTION CDXHG1-XTE DIODES [J].
ELLIOTT, CT ;
GORDON, NT ;
HALL, RS ;
CRIMES, G .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1990, 8 (02) :1251-1253