Steady-state real-time optimization using transient measurements on an experimental rig

被引:12
作者
Matias, Jose [1 ]
Oliveira, Julio P. C. [1 ,2 ]
Le Roux, Galo A. C. [2 ]
Jaeschke, Johannes [1 ]
机构
[1] Norwegian Univ Sci & Technol, Chem Engn Dept, Sem Saelandsvei 4, Kjemiblokk 5, Trondheim, Norway
[2] Univ Sao Paulo, Chem Engn Dept, Ave Prof Luciano Gualberto, trav 3, 380, BR-05088020 Sao Paulo, SP, Brazil
关键词
Real-time optimization; Online production optimization; Practical implementation; Oil & gas; OPTIMIZING CONTROL; ONLINE OPTIMIZATION; DATA RECONCILIATION; RTO; STRATEGIES; SYSTEMS; MPC;
D O I
10.1016/j.jprocont.2022.04.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Real-time optimization with persistent parameter adaptation (ROpA) is an RTO approach, where the steady-state model parameters are updated dynamically using transient measurements. Consequently, we avoid waiting for a steady-state before triggering the optimization cycle, and the steady-state economic optimization can be scheduled at any desired rate. The steady-state wait has been recognized as a fundamental limitation of the traditional RTO approach. In this paper, we implement ROpA on an experimental rig that emulates a subsea oil well network. For comparison, we also implement traditional and dynamic RTO. The experimental results confirm the in-silico findings that ROpA's performance is similar to dynamic RTO's performance with a much lower computational cost. Additionally, we present some guidelines for ROpA's practical implementation and a theoretical analysis of ROpA's convergence properties.(C) 2022 Published by Elsevier Ltd.
引用
收藏
页码:181 / 196
页数:16
相关论文
共 50 条
  • [21] Real-time optimization of dynamic systems using multiple units
    Srinivasan, B.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2007, 17 (13) : 1183 - 1193
  • [22] Steady-state to steady-state transfer of PDEs using semi-discretization and flatness
    Chatterjee, Soham
    Natarajan, Vivek
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 4454 - 4459
  • [23] Adaptation strategies for real-time optimization
    Chachuat, B.
    Srinivasan, B.
    Bonvin, D.
    COMPUTERS & CHEMICAL ENGINEERING, 2009, 33 (10) : 1557 - 1567
  • [24] Real-Time Optimization and Control of Nonlinear Processes Using Machine Learning
    Zhang, Zhihao
    Wu, Zhe
    Rincon, David
    Christofides, Panagiotis D.
    MATHEMATICS, 2019, 7 (10)
  • [25] On the Transient and Steady-State Estimates of Interval Genetic Regulatory Networks
    Li, Ping
    Lam, James
    Shu, Zhan
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (02): : 336 - 349
  • [26] Real-Time optimization using the Modifier Adaptation methodology
    Rodriguez-Blanco, T.
    Sarabia, D.
    de Prada, C.
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2018, 15 (02): : 133 - 144
  • [27] Process Real-Time Optimization using Clonalg Algorithm
    Yang Zhong
    Chen Yang
    Chen Yuchen
    Shi Xuhua
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 743 - 748
  • [28] Real-time dynamic optimization of batch systems
    Peters, Nathaniel
    Guay, Martin
    DeHaan, Darryl
    JOURNAL OF PROCESS CONTROL, 2007, 17 (03) : 261 - 271
  • [29] Model-free real-time optimization of process systems using safe Bayesian optimization
    Krishnamoorthy, Dinesh
    Doyle, Francis J.
    AICHE JOURNAL, 2023, 69 (04)
  • [30] REAL-TIME NONLINEAR OPTIMIZATION AS A GENERALIZED EQUATION
    Zavala, Victor M.
    Anitescu, Mihai
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (08) : 5444 - 5467