THE FINITE FOURIER TRANSFORM OF CLASSICAL POLYNOMIALS

被引:3
作者
Dixit, Atul [1 ]
Jiu, Lin [1 ]
Moll, Victor H. [1 ]
Vignat, Christophe [1 ,2 ]
机构
[1] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
[2] Univ Paris 11, LSS Supelec, Orsay, France
基金
美国国家科学基金会;
关键词
Fourier transform; orthogonal polynomials; Jacobi polynomials;
D O I
10.1017/S1446788714000500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The finite Fourier transform of a family of orthogonal polynomials is the usual transform of these polynomials extended by 0 outside their natural domain of orthogonality. Explicit expressions are given for the Legendre, Jacobi, Gegenbauer and Chebyshev families.
引用
收藏
页码:145 / 160
页数:16
相关论文
共 50 条
[41]   RECONSTRUCTION OF DISCRETE FINITE LENGTH SIGNAL FROM ITS END POINT AND FOURIER TRANSFORM MAGNITUDE [J].
徐雷 ;
阎平凡 ;
常迵 .
Chinese Science Bulletin, 1989, (16) :1390-1395
[42]   Fast Fourier transforms of piecewise polynomials [J].
Strain, John .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 373 :346-369
[43]   Fourier transform in bounded domains [J].
Duddeck, FME .
MECCANICA, 1997, 32 (03) :197-204
[44]   FOURIER TRANSFORM OF ALGEBRAIC MEASURES [J].
Drinfeld, Vladimir .
ASTERISQUE, 2015, (369) :313-324
[45]   The Fourier transform of multiradial functions [J].
Bernicot, Frederic ;
Grafakos, Loukas ;
Zhang, Yandan .
MONATSHEFTE FUR MATHEMATIK, 2014, 175 (01) :43-64
[46]   Towards an Improvement of Fourier Transform [J].
Aznag, Khalid ;
Datsi, Toufik ;
El Oirrak, Ahmed ;
El Bachari, Essaid .
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (01) :714-719
[47]   Fourier Transform in the Application Science [J].
Zeng, Li-jiang .
4TH INTERNATIONAL CONFERENCE ON EDUCATION REFORM AND MODERN MANAGEMENT (ERMM 2017), 2017, :138-143
[48]   Evolvability via the Fourier transform [J].
Michael, Loizos .
THEORETICAL COMPUTER SCIENCE, 2012, 462 :88-98
[49]   Palmprint identification by Fourier transform [J].
Li, WX ;
Zhang, D ;
Xu, ZQ .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2002, 16 (04) :417-432
[50]   A distribution space for Fourier transform [J].
Zhou C. ;
Yang L. ;
Huang D. .
Applied Mathematics-A Journal of Chinese Universities, 2007, 22 (2) :229-234