Hydrothermal analysis of heat transfer and thermal performance characteristics in a parabolic trough solar collector with Turbulence-Inducing elements

被引:44
|
作者
Saedodin, Seyfolah [1 ]
Zaboli, Mohammad [1 ]
Ajarostaghi, Seyed Soheil Mousavi [2 ]
机构
[1] Semnan Univ, Fac Mech Engn, Semnan, Iran
[2] Babol Noshirvani Univ Technol, Fac Mech Engn, Babol, Iran
关键词
Solar energy; Parabolic trough collector; Thermal performance; Turbulator elements; Numerical simulation; TWISTED-TAPE; CORRUGATED TUBES; CIRCULAR TUBE; FLUID-FLOW; NANOFLUID; EXCHANGER; FRICTION; CONVECTION; 2-PHASE; SWIRL;
D O I
10.1016/j.seta.2021.101266
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In present survey, a numerical study of fluid flow and heat transfer in a solar parabolic trough collector containing turbulence-inducing elements on wall of collector has been performed. Elements have helical profile throughout the pipe. The three-dimensional numerical simulations have been done by finite volume method using a commercial CFD code. The spatial discretization of mass, momentum, turbulence kinetic energy, turbulence dissipation rate and energy equations has been achieved by a second-order upwind scheme. SIMPLE algorithm has been used for velocity-pressure coupling. To calculate gradients, Green-Gauss cell-based method has been utilized. Generally, obtained numerical results are presented in two sections. In first part, examinations have been done to indicate impact of number of elements on collector efficiency. Five models including two, four, six, and eight numbers of turbulence-inducing elements have been analyzed. The results indicated that at V-Inlet = 0.32 m/sec, thermal efficiencies of models with two to six number of elements are greater than plain PTC by 6.6, 13.2, 20.6, and 27.6%, respectively. In second section, various types of element cross-section including rectangular, triangular, trapezoidal, and quasi-triangular has been investigated. Results depicted that maximum thermal efficiency belongs to case with rectangular cross-section at V-Inlet = 0.2 m/sec by 29% improvement.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Investigation of Thermal Performance of a Large Aperture Parabolic Trough Solar Collector
    Malan, Anish
    Kumar, K. Ravi
    PROCEEDINGS OF THE 25TH NATIONAL AND 3RD INTERNATIONAL ISHMT-ASTFE HEAT AND MASS TRANSFER CONFERENCE, IHMTC 2019, 2019,
  • [22] Performance Analysis and ANN Modeling of Solar Parabolic trough Collector
    Patil, M.S.
    Shekhawat, S.P.
    Applied Solar Energy (English translation of Geliotekhnika), 2022, 58 (04): : 538 - 550
  • [23] Studies on Thermal Performance of Closed Type Parabolic Trough Solar Collector
    Qiu, Zhong-zhu
    Li, Peng
    Gong, Shao-lin
    Wang, Ye
    Guo, Wen-wen
    He, Jia
    RENEWABLE AND SUSTAINABLE ENERGY, PTS 1-7, 2012, 347-353 : 812 - +
  • [24] Thermodynamic Optimization of a Solar Parabolic Trough Collector with Nanofluid as Heat Transfer Fluid
    Knysh L.
    Borysenko A.
    Applied Solar Energy (English translation of Geliotekhnika), 2022, 58 (05): : 668 - 674
  • [25] Numerical analysis of the heat transfer performance of the absorber tube of a parabolic trough solar collector using the swirling flow technique
    Elwekeel, Fifi N. M.
    Abdala, Antar M. M.
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 60
  • [26] Heat transfer analysis of parabolic trough solar receiver
    Vasquez Padilla, Ricardo
    Demirkaya, Gokmen
    Goswami, D. Yogi
    Stefanakos, Elias
    Rahman, Muhammad M.
    APPLIED ENERGY, 2011, 88 (12) : 5097 - 5110
  • [27] Dynamic heat transfer characteristics of parabolic solar trough collectors
    Liang, Zheng
    You, Changfu
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2009, 30 (04): : 451 - 456
  • [28] Experimental and numerical analysis of thermal losses of a parabolic trough solar collector
    Pigozzo Filho, Victor C.
    de Sa, Alexandre B.
    Passos, Julio C.
    Colle, Sergio
    2013 ISES SOLAR WORLD CONGRESS, 2014, 57 : 381 - 390
  • [29] Thermal Analysis, Design and Experimental Investigation of Parabolic Trough Solar Collector
    Messele, Yidnekachew
    Assefa, Abebayehu
    AFRO-EUROPEAN CONFERENCE FOR INDUSTRIAL ADVANCEMENT, AECIA 2014, 2015, 334 : 245 - 260
  • [30] Optical analysis and heat transfer of parabolic solar collector
    Wang, Zhifeng
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2000, 21 (01): : 69 - 76