Optical amplification by surface-plasmon-resonant Au grating substrates: Monolayer MoS2 with 170-fold second harmonic generation and 3-fold (off-resonance) Raman scattering

被引:6
作者
Holmi, Joonas T. [1 ]
Raju, Ramesh [1 ]
Ylonen, Jonas [2 ]
Subramaniyam, Nagarajan [2 ]
Lipsanen, Harri [1 ]
机构
[1] Aalto Univ, Dept Elect & Nanoengn, POB 13500, FI-00076 Espoo, Finland
[2] Xfold Imaging Oy, Otakaari 5 A, FI-02150 Espoo, Finland
基金
芬兰科学院;
关键词
Surface-enhanced light-matter interactions; Amplified nonlinear optical processes; Surface-plasmon-resonance optimized metal  gratings; Two-dimensional van der Waals materials for  on-chip photonic devices; ENHANCEMENT;
D O I
10.1016/j.spmi.2021.107077
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Nanoplasmonics is a potential game-changer in the development of next-generation on-chip photonic devices and computers, owing to the geometrically controlled and amplified linear and nonlinear optical processes. For instance, it resolves the limited light-matter interaction of the unique two-dimensional (2D) crystalline materials like semiconducting monolayer molybdenum disulfide (1L-MoS2). Metal grating (MG) substrates excel at this because their surface plasmons (SPs) can lead to stark field confinement near the surface. This work studies optical amplification of 1L-MoS2 on the gold (Au) MG substrate, which was designed to operate in a glycerol environment with SP resonance (SPR) at 850 nm excitation wavelength. Its design was verified by simulated and experimental reflectances, and topographically inspected by atomic force microscopy (AFM). Two advanced imaging modalities, second harmonic generation (SHG) and confocal Raman microscopy (CRM) were used to evaluate its 170-fold SHG on- and 3-fold CRM offresonance optical amplifications, respectively. Some MoS2-to-grating adhesion issues due to trapped liquid showed as image nonuniformities. Possible improvements to limitations like surface roughness were also discussed. These Au MG substrates can boost conventional linear and nonlinear backscattering microscopies because they are tunable in the visible and near-infrared range by selecting geometry, metal, and environment.
引用
收藏
页数:9
相关论文
共 51 条
[1]   Non-Uniform Narrow Groove Plasmonic Nano-Gratings for SPR Sensing and Imaging [J].
Agrawal, Ajay Kumar ;
Suchitta, Akanksha ;
Dhawan, Anuj .
IEEE ACCESS, 2021, 9 :10136-10152
[2]   Plasmonic Antennas for Directional Sorting of Fluorescence Emission [J].
Aouani, Heykel ;
Mahboub, Oussama ;
Devaux, Eloise ;
Rigneault, Herve ;
Ebbesen, Thomas W. ;
Wenger, Jerome .
NANO LETTERS, 2011, 11 (06) :2400-2406
[3]   Single-step chemical vapour deposition of anti-pyramid MoS2/WS2 vertical heterostructures [J].
Bai, Xueyin ;
Li, Shisheng ;
Das, Susobhan ;
Du, Luojun ;
Dai, Yunyun ;
Yao, Lide ;
Raju, Ramesh ;
Du, Mingde ;
Lipsanen, Harri ;
Sun, Zhipei .
NANOSCALE, 2021, 13 (08) :4537-4542
[4]   Plasmon-Enhanced Fluorescence Biosensors: a Review [J].
Bauch, Martin ;
Toma, Koji ;
Toma, Mana ;
Zhang, Qingwen ;
Dostalek, Jakub .
PLASMONICS, 2014, 9 (04) :781-799
[5]   Surface-Enhanced Raman Scattering and Fluorescence on Gold Nanogratings [J].
Chang, Yu-Chung ;
Huang, Bo-Han ;
Lin, Tsung-Hsien .
NANOMATERIALS, 2020, 10 (04)
[6]   Improving the performance of light-emitting diodes via plasmonic-based strategies [J].
Fan, Xingce ;
Hao, Qi ;
Qiu, Teng ;
Chu, Paul K. .
JOURNAL OF APPLIED PHYSICS, 2020, 127 (04)
[7]   Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems [J].
Ferrari, Andrea C. ;
Bonaccorso, Francesco ;
Fal'ko, Vladimir ;
Novoselov, Konstantin S. ;
Roche, Stephan ;
Boggild, Peter ;
Borini, Stefano ;
Koppens, Frank H. L. ;
Palermo, Vincenzo ;
Pugno, Nicola ;
Garrido, Jose A. ;
Sordan, Roman ;
Bianco, Alberto ;
Ballerini, Laura ;
Prato, Maurizio ;
Lidorikis, Elefterios ;
Kivioja, Jani ;
Marinelli, Claudio ;
Ryhaenen, Tapani ;
Morpurgo, Alberto ;
Coleman, Jonathan N. ;
Nicolosi, Valeria ;
Colombo, Luigi ;
Fert, Albert ;
Garcia-Hernandez, Mar ;
Bachtold, Adrian ;
Schneider, Gregory F. ;
Guinea, Francisco ;
Dekker, Cees ;
Barbone, Matteo ;
Sun, Zhipei ;
Galiotis, Costas ;
Grigorenko, Alexander N. ;
Konstantatos, Gerasimos ;
Kis, Andras ;
Katsnelson, Mikhail ;
Vandersypen, Lieven ;
Loiseau, Annick ;
Morandi, Vittorio ;
Neumaier, Daniel ;
Treossi, Emanuele ;
Pellegrini, Vittorio ;
Polini, Marco ;
Tredicucci, Alessandro ;
Williams, Gareth M. ;
Hong, Byung Hee ;
Ahn, Jong-Hyun ;
Kim, Jong Min ;
Zirath, Herbert ;
van Wees, Bart J. .
NANOSCALE, 2015, 7 (11) :4598-4810
[8]   Photobleaching of Fluorophores on the Surface of Nanoantennas [J].
Galloway, C. M. ;
Artur, C. ;
Grand, J. ;
Le Ru, E. C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (49) :28820-28830
[9]   Enhancement of optical processes in coupled plasmonic nanocavities [Invited] [J].
Genevet, Patrice ;
Tetienne, Jean-Philippe ;
Blanchard, Romain ;
Kats, Mikhail A. ;
Mueller, J. P. Balthasar ;
Scully, Marlan O. ;
Capasso, Federico .
APPLIED OPTICS, 2011, 50 (31) :G56-G62
[10]   Large Enhancement of Nonlinear Optical Phenomena by Plasmonic Nanocavity Gratings [J].
Genevet, Patrice ;
Tetienne, Jean-Philippe ;
Gatzogiannis, Evangelos ;
Blanchard, Romain ;
Kats, Mikhail A. ;
Scully, Marlan O. ;
Capasso, Federico .
NANO LETTERS, 2010, 10 (12) :4880-4883