Convergence of partial sum processes to Levy processes for associated sequences

被引:2
作者
Louhichi, Sana [1 ]
Rio, Emmanuel [2 ]
机构
[1] Univ Grenoble 1, UMR CNRS 5525, Lab Jean Kuntzmann, Tour IRMA, F-38041 St Martin Dheres, France
[2] Univ Versailles St Quentin Yvelines, UMR CNRS 8100, Math Lab, F-78035 Versailles, France
关键词
WEAK-CONVERGENCE;
D O I
10.1016/j.crma.2010.12.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note we prove that, if for a suitably normalized version of the partial-sum process associated to a strictly stationary and associated sequence of real-valued random variables, the finite dimensional convergence to a Levy stable motion holds, then the partial-sum process converges to this Levy stable motion in the M-1-topology of Skorohod. (C) 2010 Publie par Elsevier Masson SAS pour l'Academie des sciences.
引用
收藏
页码:89 / 91
页数:3
相关论文
共 6 条
[1]   WEAK-CONVERGENCE OF SUMS OF MOVING AVERAGES IN THE ALPHA-STABLE DOMAIN OF ATTRACTION [J].
AVRAM, F ;
TAQQU, MS .
ANNALS OF PROBABILITY, 1992, 20 (01) :483-503
[2]   ASSOCIATED RANDOM-VARIABLES AND MARTINGALE INEQUALITIES [J].
NEWMAN, CM ;
WRIGHT, AL .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 59 (03) :361-371
[3]   AN INVARIANCE-PRINCIPLE FOR CERTAIN DEPENDENT SEQUENCES [J].
NEWMAN, CM ;
WRIGHT, AL .
ANNALS OF PROBABILITY, 1981, 9 (04) :671-675
[4]  
Skorohod AV., 1956, Theory of Probability and Its Applications, V1, P261, DOI [DOI 10.1137/1101022, 10.1137/1101022]
[5]   WEAK CONVERGENCE TO LEVY STABLE PROCESSES IN DYNAMICAL SYSTEMS [J].
Tyran-Kaminska, Marta .
STOCHASTICS AND DYNAMICS, 2010, 10 (02) :263-289
[6]  
Whitt W., 2002, SPRING S OPERAT RES