Privacy-Preserving Fair Learning of Support Vector Machine with Homomorphic Encryption

被引:13
作者
Park, Saerom [1 ]
Byun, Junyoung [2 ]
Lee, Joohee [1 ]
机构
[1] Sungshin Womens Univ, Seoul, South Korea
[2] Seoul Natl Univ, Seoul, South Korea
来源
PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22) | 2022年
关键词
privacy-preserving machine learning; homomorphic encryption; fair learning; support vector machine; INVERSE;
D O I
10.1145/3485447.3512252
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Fair learning has received a lot of attention in recent years since machine learning models can be unfair in automated decision-making systems with respect to sensitive attributes such as gender, race, etc. However, to mitigate the discrimination on the sensitive attributes and train a fair model, most fair learning methods have required to get access to the sensitive attributes in training or validation phases. In this study, we propose a privacy-preserving training algorithm for a fair support vector machine classifier based on Homomorphic Encryption (HE), where the privacy of both sensitive information and model secrecy can be preserved. The expensive computational costs of HE can be significantly improved by protecting only the sensitive information, introducing refined formulation and low-rank approximation using shared eigenvectors. Through experiments on the synthetic and real-world data, we demonstrate the effectiveness of our algorithm in terms of accuracy and fairness and show that our method significantly outperforms other privacypreserving solutions in terms of better trade-offs between accuracy and fairness. To the best of our knowledge, our algorithm is the first privacy-preserving fair learning algorithm using HE.
引用
收藏
页码:3572 / 3583
页数:12
相关论文
共 50 条
  • [41] Privacy-Preserving Palm Print Authentication using Homomorphic Encryption
    Im, Jong-Hyuk
    Choi, JinChun
    Nyang, DaeHun
    Lee, Mun-Kyu
    2016 IEEE 14TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 14TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 2ND INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/DATACOM/CYBERSC, 2016, : 878 - 881
  • [42] Distributed Privacy-Preserving Fusion Estimation Using Homomorphic Encryption
    Yan X.
    Zhuo S.
    Wu Y.
    Chen B.
    Journal of Beijing Institute of Technology (English Edition), 2022, 31 (06): : 551 - 558
  • [43] Privacy-preserving neural networks with Homomorphic encryption: Challenges and opportunities
    Bernardo Pulido-Gaytan
    Andrei Tchernykh
    Jorge M. Cortés-Mendoza
    Mikhail Babenko
    Gleb Radchenko
    Arutyun Avetisyan
    Alexander Yu Drozdov
    Peer-to-Peer Networking and Applications, 2021, 14 : 1666 - 1691
  • [44] Privacy Preserving Classification of EEG Data Using Machine Learning and Homomorphic Encryption
    Popescu, Andreea Bianca
    Taca, Ioana Antonia
    Nita, Cosmin Ioan
    Vizitiu, Anamaria
    Demeter, Robert
    Suciu, Constantin
    Itu, Lucian Mihai
    APPLIED SCIENCES-BASEL, 2021, 11 (16):
  • [45] Herb: Privacy-preserving Random Forest with Partially Homomorphic Encryption
    Liao, Qianying
    Cabral, Bruno
    Fernandes, Joao Paulo
    Lourenco, Nuno
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [46] Privacy-preserving anomaly detection in cloud with lightweight homomorphic encryption
    Alabdulatif, Abdulatif
    Kumarage, Heshan
    Khalil, Ibrahim
    Yi, Xun
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2017, 90 : 28 - 45
  • [47] Privacy-preserving spam filtering using homomorphic and functional encryption
    Nguyen, Tham
    Karunanayake, Naveen
    Wang, Sicong
    Seneviratne, Suranga
    Hu, Peizhao
    COMPUTER COMMUNICATIONS, 2023, 197 : 230 - 241
  • [48] Privacy-preserving neural networks with Homomorphic encryption: Challenges and opportunities
    Pulido-Gaytan, Bernardo
    Tchernykh, Andrei
    Cortes-Mendoza, Jorge M.
    Babenko, Mikhail
    Radchenko, Gleb
    Avetisyan, Arutyun
    Drozdov, Alexander Yu
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2021, 14 (03) : 1666 - 1691
  • [49] Pipa: Privacy-preserving Password Checkup via Homomorphic Encryption
    Li, Jie
    Liu, Yamin
    Wu, Shuang
    ASIA CCS'21: PROCEEDINGS OF THE 2021 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2021, : 242 - 251
  • [50] A Homomorphic Encryption Approach for Privacy-Preserving Deep Learning in Digital Health Care Service
    Tuong Nguyen-Van
    Thanh Nguyen-Van
    Tien-Thinh Nguyen
    Dong Bui-Huu
    Quang Le-Nhat
    Tran Vu Pham
    Khuong Nguyen-An
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, PT II, 2022, 13758 : 520 - 533