Size-Dependent Properties of Two-Dimensional MoS2 and WS2

被引:166
作者
Thang Phan Nguyen [1 ]
Sohn, Woonbae
Oh, Jeong Hyeon [1 ]
Jang, Ho Won [2 ]
Kim, Soo Young [1 ]
机构
[1] Chung Ang Univ, Sch Chem Engn & Mat Sci, 84 Heukseok Ro, Seoul 06974, South Korea
[2] Seoul Natl Univ, Res Inst Adv Mat, Dept Mat Sci & Engn, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
SINGLE-LAYER; HYDROGEN EVOLUTION; QUANTUM DOTS; LARGE-AREA; ATOMIC LAYERS; CARBON DOTS; NANOSHEETS; MONOLAYER; WATER; NANOPARTICLES;
D O I
10.1021/acs.jpcc.6b01838
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The characteristic differences between MoS2 and WS2 nanosheets and nanodots are investigated. The nanosheets were formed by liquid-phase sonication, while the nanodots were formed by breaking the nanosheets through heating the solvent ethylene glycol. The nanosheets and nanodots were approximately 0.7-2 nm thick, with slight deviation. Most of the nanosheets were longer than 100 nm, and most of the nanodots were shorter than 5 nm. As the bulk materials were transformed into nanosheets and/or nanodots, the absorption peaks and Raman peaks shifted to shorter wavelengths. Photoluminescence peaks were observed at 500 and 445 nm in the MoS2 and WS2 samples smaller than 100 nm. In the X-ray diffraction spectra, only the (002) peak was present in the nanosheets, while no peak was detected for the nanodots due to their small size. No detectable differences between the nanosheets Wavelength (nm) and nanodots were observed in the transmission electron micrographs, synchrotron radiation photoemission spectra, or work function measurements, suggesting that exfoliation did not affect the crystal structure or bonding configuration of MoS2 and WS2. These results could potentially be used for the application of MoS2 and WS2 nanosheets and nanodots in optical devices, hydrogen evolution reaction catalysts, bioapplicable devices, and so on.
引用
收藏
页码:10078 / 10085
页数:8
相关论文
共 56 条
[1]   Two-Dimensional Transition Metal Dichalcogenide Nanomaterials for Solar Water Splitting [J].
Andoshe, Dinsefa M. ;
Jeon, Jong-Myeong ;
Kim, Soo Young ;
Jang, Ho Won .
ELECTRONIC MATERIALS LETTERS, 2015, 11 (03) :323-335
[2]   Identification of individual and few layers of WS2 using Raman Spectroscopy [J].
Berkdemir, Ayse ;
Gutierrez, Humberto R. ;
Botello-Mendez, Andres R. ;
Perea-Lopez, Nestor ;
Elias, Ana Laura ;
Chia, Chen-Ing ;
Wang, Bei ;
Crespi, Vincent H. ;
Lopez-Urias, Florentino ;
Charlier, Jean-Christophe ;
Terrones, Humberto ;
Terrones, Mauricio .
SCIENTIFIC REPORTS, 2013, 3
[3]   Surface functionalized carbogenic quantum dots [J].
Bourlinos, Athanasios B. ;
Stassinopoulos, Andreas ;
Anglos, Demetrios ;
Zboril, Radek ;
Karakassides, Michael ;
Giannelis, Emmanuel P. .
SMALL, 2008, 4 (04) :455-458
[4]   Fabrication and Characterization of Silicon Quantum Dots in Si-Rich Silicon Carbide Films [J].
Chang, Geng-Rong ;
Ma, Fei ;
Ma, Dayan ;
Xu, Kewei .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (12) :10824-10828
[5]   One-pot Synthesis of CdS Nanocrystals Hybridized with Single-Layer Transition-Metal Dichalcogenide Nanosheets for Efficient Photocatalytic Hydrogen Evolution [J].
Chen, Junze ;
Wu, Xue-Jun ;
Yin, Lisha ;
Li, Bing ;
Hong, Xun ;
Fan, Zhanxi ;
Chen, Bo ;
Xue, Can ;
Zhang, Hua .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (04) :1210-1214
[6]   Two-dimensional graphene analogues for biomedical applications [J].
Chen, Yu ;
Tan, Chaoliang ;
Zhang, Hua ;
Wang, Lianzhou .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (09) :2681-2701
[7]   Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials [J].
Coleman, Jonathan N. ;
Lotya, Mustafa ;
O'Neill, Arlene ;
Bergin, Shane D. ;
King, Paul J. ;
Khan, Umar ;
Young, Karen ;
Gaucher, Alexandre ;
De, Sukanta ;
Smith, Ronan J. ;
Shvets, Igor V. ;
Arora, Sunil K. ;
Stanton, George ;
Kim, Hye-Young ;
Lee, Kangho ;
Kim, Gyu Tae ;
Duesberg, Georg S. ;
Hallam, Toby ;
Boland, John J. ;
Wang, Jing Jing ;
Donegan, John F. ;
Grunlan, Jaime C. ;
Moriarty, Gregory ;
Shmeliov, Aleksey ;
Nicholls, Rebecca J. ;
Perkins, James M. ;
Grieveson, Eleanor M. ;
Theuwissen, Koenraad ;
McComb, David W. ;
Nellist, Peter D. ;
Nicolosi, Valeria .
SCIENCE, 2011, 331 (6017) :568-571
[8]   Bandgap Engineering of Strained Monolayer and Bilayer MoS2 [J].
Conley, Hiram J. ;
Wang, Bin ;
Ziegler, Jed I. ;
Haglund, Richard F., Jr. ;
Pantelides, Sokrates T. ;
Bolotin, Kirill I. .
NANO LETTERS, 2013, 13 (08) :3626-3630
[9]   Trap state dynamics in MoS2 nanoclusters [J].
Doolen, R ;
Laitinen, R ;
Parsapour, F ;
Kelley, DF .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (20) :3906-3911
[10]   Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries [J].
Du, Guodong ;
Guo, Zaiping ;
Wang, Shiquan ;
Zeng, Rong ;
Chen, Zhixin ;
Liu, Huakun .
CHEMICAL COMMUNICATIONS, 2010, 46 (07) :1106-1108