ORLICZ SPACES AND ENDPOINT SOBOLEV-POINCARE INEQUALITIES FOR DIFFERENTIAL FORMS IN HEISENBERG GROUPS

被引:4
作者
Baldi, Annalisa [1 ]
Franchi, Bruno [1 ]
Pansu, Pierre [2 ]
机构
[1] Univ Bologna, Dipartimento Matemat, Bologna, Italy
[2] Univ Paris Saclay, Univ Paris Sud, CNRS, Lab Math Orsay, Paris, France
来源
MATEMATICHE | 2020年 / 75卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
Heisenberg groups; differential forms; Sobolev-Poincare inequalities; Orlicz space; Moser-Trudinger inequality; OPERATORS;
D O I
10.4418/2020.75.1.9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove Poincare and Sobolev inequalities for differential forms in the Rumin's contact complex on Heisenberg groups. In particular, we deal with endpoint values of the exponents, obtaining finally estimates akin to exponential Trudinger inequalities for scalar function. These results complete previous results obtained by the authors away from the exponential case. From the geometric point of view, Poincare and Sobolev inequalities for differential forms provide a quantitative formulation of the vanishing of the cohomology. They have also applications to regularity issues for partial differential equations.
引用
收藏
页码:167 / 194
页数:28
相关论文
共 38 条
  • [1] Adams R.A., 2003, PURE APPL MATH, V140
  • [2] [Anonymous], 2008, CLASSICS MATH
  • [3] [Anonymous], 1982, Mathematical Notes, DOI DOI 10.1515/9780691222455
  • [4] L1-Poincare and Sobolev inequalities for differential forms in Euclidean spaces
    Baldi, Annalisa
    Franchi, Bruno
    Pansu, Pierre
    [J]. SCIENCE CHINA-MATHEMATICS, 2019, 62 (06) : 1029 - 1040
  • [5] A Recursive Basis for Primitive Forms in Symplectic Spaces and Applications to Heisenberg Groups
    Baldi, Annalisa
    Barnabei, Marilena
    Franchi, Bruno
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (03) : 265 - 285
  • [6] Compensated compactness for differential forms in Carnot groups and applications
    Baldi, Annalisa
    Franchi, Bruno
    Tchou, Nicoletta
    Tesi, Maria Carla
    [J]. ADVANCES IN MATHEMATICS, 2010, 223 (05) : 1555 - 1607
  • [7] Baldi A, 2009, J EUR MATH SOC, V11, P777
  • [8] Baldi Annalisa, 2018, L1 POINCARE INEQUALI
  • [9] Baldi Annalisa, 2018, POINCARE SOBOLEV INE
  • [10] Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3