Positive Exponents for Random Products of Conservative Surface Diffeomorphisms and Some Skew Products

被引:1
作者
Obata, Davi [1 ,2 ]
Poletti, Mauricio [1 ]
机构
[1] Univ Paris Sud 11, CNRS, UMR 8628, Lab Math Orsay, F-91405 Orsay, France
[2] Univ Fed Rio de Janeiro, Inst Matemat, POB 68530, BR-21945970 Rio De Janeiro, Brazil
关键词
Lyapunov exponents; Non-uniform hyperbolicity; Skew products; Random products of diffeomorphisms; Conservative dynamics; DYNAMICAL-SYSTEMS; LYAPUNOV; GENERICITY; COCYCLES;
D O I
10.1007/s10884-021-10052-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show that a "typical" random product of conservative surface diffeomorphism has positive Lyapunov exponents. We prove that for any compact oriented surface S, any r >= 1, and any d >= 2, there exists a C-1-open and C-1-dense subset of Diff(vol)(r)(S)(d) such that if (f(1), ... , f(d)) belongs to this subset, the random product generated by them has positive Lyapunov exponents. Our proof also allows us to deal with more general skew products, for example skew products with a volume preserving Anosov diffeomorphism on the basis, or with a subshift of finite type on the basis preserving a measure with product structure. In these cases we prove the C-1-density and C-r-openness of the existence of positive Lyapunov exponents.
引用
收藏
页码:2405 / 2428
页数:24
相关论文
共 30 条
[1]   Diffeomorphisms with positive metric entropy [J].
Avila, A. ;
Crovisier, S. ;
Wilkinson, A. .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2016, 124 (01) :319-347
[2]  
Avila A., STABLE ACCESSIBILITY
[3]  
Avila A, 2013, ASTERISQUE, P13
[4]   On the regularization of conservative maps [J].
Avila, Artur .
ACTA MATHEMATICA, 2010, 205 (01) :5-18
[5]   Extremal Lyapunov exponents: an invariance principle and applications [J].
Avila, Artur ;
Viana, Marcelo .
INVENTIONES MATHEMATICAE, 2010, 181 (01) :115-178
[6]  
Barreira L., 2001, P S PURE MATH, V69, P3
[7]  
Barrientos P.G., ARXIV180908619
[8]   On Herman's positive entropy conjecture [J].
Berger, Pierre ;
Turaev, Dmitry .
ADVANCES IN MATHEMATICS, 2019, 349 :1234-1288
[9]   Genericity of zero Lyapunov exponents [J].
Bochi, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 :1667-1696
[10]  
Bowen R, 2008, LECT NOTES MATH, V470, P1, DOI 10.1007/978-3-540-77695-6