Maps preserving unitarily invariant norms of Jordan product of matrices

被引:2
作者
Kuzma, Bojan [1 ,3 ]
Petek, Tatjana [2 ,3 ]
机构
[1] Univ Primorska, Fac Math Nat Sci & Informat Technol, Glagoljaska 8, SI-6000 Koper, Slovenia
[2] Univ Maribor, Fac Elect Engn & Comp Sci, Koroska 46, SI-2000 Maribor, Slovenia
[3] Inst Math Phys & Mech, Jadranska 19, SI-1000 Ljubljana, Slovenia
关键词
Matrix algebra; Unitarily invariant function; Jordan product; Surjective preserver; ISOMETRIES; MAPPINGS;
D O I
10.1016/j.jmaa.2017.06.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Surjective isometries in a given unitarily invariant norm on n-by-n complex matrices and with respect to Jordan product, are classified. Moreover, the similar problem is considered for a much wider class of unitarily invariant functions. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1579 / 1596
页数:18
相关论文
共 22 条
  • [1] [Anonymous], 1995, J Convex Anal
  • [2] [Anonymous], 1970, CONVEX ANAL
  • [3] Approximate isometries on euclidean spaces
    Bhatia, R
    Semrl, P
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1997, 104 (06) : 497 - 504
  • [4] Mappings on matrices: Invariance of functional values of matrix products
    Chan, Jor-Ting
    Li, Chi-Kwong
    Sze, Nung-Sing
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 81 : 165 - 184
  • [5] Isometries for unitarily invariant norms
    Chan, JT
    Li, CK
    Sze, NS
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 399 : 53 - 70
  • [6] Charzynski Z., 1953, Studia Mathematica, V13, P94
  • [7] Unitary similarity invariant function preservers of skew products of operators
    Cui, Jianlian
    Li, Chi-Kwong
    Sze, Nung-Sing
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 454 (02) : 716 - 729
  • [8] Fleming R.J., 2002, Isometries on Banach spaces: function spaces, Monographs and Surveys in Pure and Applied Mathematics
  • [9] Maps preserving matrix pairs with zero Jordan product
    Fosner, A.
    Kuzma, B.
    Kuzma, T.
    Sze, N. -S.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (05) : 507 - 529
  • [10] Gentry R., 1973, COLL MATH J, V4, P11