Adaptive control optimization in micro-milling of hardened steels-evaluation of optimization approaches

被引:26
作者
Coppel, Ricardo [1 ]
Abellan-Nebot, Jose V. [2 ]
Siller, Hector R. [1 ]
Rodriguez, Ciro A. [1 ]
Guedea, Federico [1 ]
机构
[1] Tecnol Monterrey, Ave Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
[2] Univ Jaume 1, Dept Ind Syst Engn & Design, Av Sos Baynat S-N, Castellon de La Plana 12071, Spain
关键词
Micro-milling; Hardened steels; Adaptive control; Intelligent machining systems; SURFACE-ROUGHNESS PREDICTION; NEURAL-NETWORK; TOOL; OPERATIONS; SYSTEM; SELECTION; COATINGS; SIGNALS; MODEL;
D O I
10.1007/s00170-015-7807-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, the miniaturization of many consumer products is extending the use of micro-milling operations with high-quality requirements. However, the impacts of cutting-tool wear on part dimensions, form and surface integrity are not negligible and part quality assurance for a minimum production cost is a challenging task. In fact, industrial practices usually set conservative cutting parameters and early cutting replacement policies in order to minimize the impact of cutting-tool wear on part quality. Although these practices may ensure part integrity, the production cost is far away to be minimized, especially in highly tool-consuming operations like mold and die micro-manufacturing. In this paper, an adaptive control optimization (ACO) system is proposed to estimate cutting-tool wear in terms of part quality and adapt the cutting conditions accordingly in order to minimize the production cost, ensuring quality specifications in hardened steel micro-parts. The ACO system is based on: (1) a monitoring sensor system composed of a dynamometer, (2) an estimation module with Artificial Neural Networks models, (3) an optimization module with evolutionary optimization algorithms, and (4) a CNC interface module. In order to operate in a nearly real-time basis and facilitate the implementation of the ACO system, different evolutionary optimization algorithms are evaluated such as particle swarm optimization (PSO), genetic algorithms (GA), and simulated annealing (SA) in terms of accuracy, precision, and robustness. The results for a given micro-milling operation showed that PSO algorithm performs better than GA and SA algorithms under computing time constraints. Furthermore, the implementation of the final ACO system reported a decrease in the production cost of 12.3 and 29 % in comparison with conservative and high-production strategies, respectively.
引用
收藏
页码:2219 / 2238
页数:20
相关论文
共 50 条
[21]   Wear behavior of coated tools in laser assisted micro-milling of hardened steel [J].
Kumar, Mukund ;
Melkote, Shreyes N. ;
M'Saoubi, Rachid .
WEAR, 2012, 296 (1-2) :510-518
[22]   Analysis and optimization of micro-milling parameters for improving part quality in ultrafine graphite with varying workpiece inclination angles [J].
Kramar, D. ;
Miljuskovic, G. ;
Cica, Dj .
ADVANCES IN PRODUCTION ENGINEERING & MANAGEMENT, 2025, 20 (01) :75-86
[23]   Novel method for burrs quantitative evaluation in micro-milling [J].
Medeossi, Fabrizio ;
Sorgato, Marco ;
Bruschi, Stefania ;
Savio, Enrico .
PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2018, 54 :379-387
[24]   Optimization of the process parameters for micro-milling thin-walled micro-parts using advanced algorithms [J].
Peng Wang ;
Qingshun Bai ;
Kai Cheng ;
Liang Zhao ;
Hui Ding .
The International Journal of Advanced Manufacturing Technology, 2022, 121 :6255-6269
[25]   Parametric Analysis and Optimization on Fiber Laser Micro-Milling on AZ31 Magnesium Alloy [J].
Kibria, Golam ;
Aktar, Manjur ;
Sekh, Mukandar ;
Haque, Rafiqul .
JOURNAL OF ADVANCED MANUFACTURING SYSTEMS, 2024, 23 (04) :941-968
[26]   Optimization of Cutting Parameters to Minimize Wall Deformation in Micro-Milling of Thin-Wall Geometries [J].
Hascelik, Ahmet ;
Aslantas, Kubilay ;
Yalcin, Bekir .
MICROMACHINES, 2025, 16 (03)
[27]   Design, optimization and manufacturing of polycrystalline diamond micro- end-mill for micro-milling of GH4169 [J].
Chen, Ni ;
Yuan, Yuan ;
Guo, Cheng ;
Zhang, Xinlei ;
Hao, Xiuqing ;
Ning, He .
DIAMOND AND RELATED MATERIALS, 2020, 108
[28]   Burr Control for Removal of Metal Coating from Plastics Substrate by Micro-Milling [J].
Zhao, Kai ;
Jia, Zhenyuan ;
Liu, Wei ;
Ma, Jianwei ;
Ding, Lichao .
MATERIALS AND MANUFACTURING PROCESSES, 2016, 31 (05) :641-647
[29]   Cutting parameters optimization for MRR under the constraints of surface roughness and cutter breakage in micro-milling process [J].
Xiaohong Lu ;
Haixing Zhang ;
Zhenyuan Jia ;
Yixuan Feng ;
Steven Y. Liang .
Journal of Mechanical Science and Technology, 2018, 32 :3379-3388
[30]   Deformation control in micro-milling of thin-walled structures [J].
Kou, Zhaojun ;
Wan, Yi ;
Liu, Zhanqiang ;
Cai, Yukui ;
Liang, Xichang .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2015, 81 (5-8) :967-974