Application of H-likelihood to factor analysis models with binary response data

被引:7
作者
Wu, Jianmin [2 ]
Bentler, Peter M. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Psychol & Stat, Los Angeles, CA 90095 USA
[2] Beijing Inst Technol, Dept Econ, Sch Humanities & Social Sci, Beijing, Peoples R China
关键词
H-likelihood; Binary response; Marginal likelihood; Factor analysis; GENERALIZED LINEAR-MODELS; MAXIMUM-LIKELIHOOD; ORDINAL VARIABLES; MIXED MODELS; REGRESSION; ALGORITHMS;
D O I
10.1016/j.jmva.2011.09.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The estimation of binary responses in factor analysis models is often complicated, because the marginal likelihood involves an intractable integral. When the number of latent variables is large, the dimensionality of a required integral will be high, and thus numerical integration would not be an ideal estimation method. This paper proposes H-likelihood for the estimation of binary response factor analysis models, avoiding the intractable integral. Examples and simulation studies demonstrate the performance of the proposed method. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:72 / 79
页数:8
相关论文
共 50 条
  • [41] Fitting Large Factor Analysis Models With Ordinal Data
    DiStefano, Christine
    McDaniel, Heather L.
    Zhang, Liyun
    Shi, Dexin
    Jiang, Zhehan
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2019, 79 (03) : 417 - 436
  • [42] Maximum-likelihood mixture factor analysis model and its application for process monitoring
    Ge, Zhiqiang
    Song, Zhihuan
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2010, 102 (01) : 53 - 61
  • [43] Nonignorable dropout models for longitudinal binary data with random effects: An application of Monte Carlo approximation through the Gibbs output
    Chan, Jennifer S. K.
    Leung, Doris Y. P.
    Choy, S. T. Boris
    Wan, Wai Y.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (12) : 4530 - 4545
  • [44] Maximum likelihood estimation of multinomial probit factor analysis models for multivariate t-distribution
    Jie Jiang
    Xinsheng Liu
    Keming Yu
    Computational Statistics, 2013, 28 : 1485 - 1500
  • [45] Maximum likelihood estimation of multinomial probit factor analysis models for multivariate t-distribution
    Jiang, Jie
    Liu, Xinsheng
    Yu, Keming
    COMPUTATIONAL STATISTICS, 2013, 28 (04) : 1485 - 1500
  • [46] Joint analysis of longitudinal count and binary response data in the presence of outliers
    Sinha, Sanjoy
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2025, 53 (01):
  • [47] Skew-normal factor analysis models with incomplete data
    Liu, M.
    Lin, T. I.
    JOURNAL OF APPLIED STATISTICS, 2015, 42 (04) : 789 - 805
  • [48] Exploratory Graph Analysis for Factor Retention: Simulation Results for Continuous and Binary Data
    Cosemans, Tim
    Rosseel, Yves
    Gelper, Sarah
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2022, 82 (05) : 880 - 910
  • [49] A Gibbs sampling approach to Bayesian analysis of generalized linear models for binary data
    Oh, MS
    COMPUTATIONAL STATISTICS, 1997, 12 (04) : 431 - 445
  • [50] Generalized Quasi-Likelihood Ratio Tests for Semiparametric Analysis of Covariance Models in Longitudinal Data
    Tang, Jin
    Li, Yehua
    Guan, Yongtao
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (514) : 736 - 747