On the Darboux-Nijenhuis Variables for the Open Toda Lattice

被引:7
作者
Grigoryev, Yuriy A. [1 ]
Tsiganov, Andrey V. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg, Russia
关键词
bi-Hamiltonian systems; Toda lattice;
D O I
10.3842/SIGMA.2006.097
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss two known constructions proposed by Moser and by Sklyanin of the Darboux-Nijenhuis coordinates for the open Toda lattice.
引用
收藏
页数:15
相关论文
共 24 条
[1]  
[Anonymous], 1988, MB PORTER LECT
[2]  
[Anonymous], LECTURE NOTES PHYSIC
[3]   A SYSTEMATIC STUDY OF THE TODA LATTICE [J].
DAS, A ;
OKUBO, S .
ANNALS OF PHYSICS, 1989, 190 (02) :215-232
[4]   Bihamiltonian geometry and separation of variables for Toda lattices [J].
Falqui, G ;
Magri, F ;
Pedroni, M .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2001, 8 (Suppl 1) :118-127
[5]   Separation of variables for bi-Hamiltonian systems [J].
Falqui, G ;
Pedroni, M .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2003, 6 (02) :139-179
[6]   Poisson brackets on rational functions and multi-Hamiltonian structure for integrable lattices [J].
Faybusovich, L ;
Gekhtman, M .
PHYSICS LETTERS A, 2000, 272 (04) :236-244
[7]   ON THE MASTER SYMMETRIES AND BI-HAMILTONIAN STRUCTURE OF THE TODA LATTICE [J].
FERNANDES, RL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (15) :3797-3803
[8]   CANONICALLY CONJUGATE VARIABLES FOR KORTEWEG-DEVRIES EQUATION AND TODA LATTICE WITH PERIODIC BOUNDARY-CONDITIONS [J].
FLASCHKA, H ;
MCLAUGHLIN, DW .
PROGRESS OF THEORETICAL PHYSICS, 1976, 55 (02) :438-456
[9]  
Frlicher A., 1956, PROC KOND NED AKAD, V18, P338
[10]   SYMPLECTIC STRUCTURES, THEIR BACKLUND-TRANSFORMATIONS AND HEREDITARY SYMMETRIES [J].
FUCHSSTEINER, B ;
FOKAS, AS .
PHYSICA D, 1981, 4 (01) :47-66