Autogating in Flow Cytometry Data using SVM Classifiers for Bacterioplankton Identification

被引:0
|
作者
Cordeiro, Elionai Moura [1 ]
Wanderley, Bruno M. S. [1 ]
Amorim de Araujo, Daniel Sabino [1 ]
Doria Neto, Adriao Duarte [2 ]
机构
[1] Univ Fed Rio Grande do Norte, IMD, Programa Posgrad Bioinformat, Natal, RN, Brazil
[2] Univ Fed Rio Grande do Norte, CT, DCA, Dept Engn Comp & Automacao, Natal, RN, Brazil
来源
PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI) | 2017年
基金
巴西圣保罗研究基金会;
关键词
Flow Cytometry; Autogating; Support Vector Machine; Enviromental Analysis; Machine Learning;
D O I
10.1109/CSCI.2017.222
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper shows the results of a methodology proposal for bacterioplankton identification using a machine learning approach named SVM. Samples used were taken from 19 high elevated lakes located at Pyrenees Mountains. Samples generated 74 databases after been analyzed by a specialist to serve as input to the algorithm. We observed the viability of this method with 3.35% of error in identification. Furthermore, there is no isolated direct correlation between robustness of the prediction models and high complexity of the input data but, indeed, the algorithm settings, function cost and variables choice have an important role in the performance as well.
引用
收藏
页码:1265 / 1269
页数:5
相关论文
共 50 条
  • [41] Identification of feto-maternal haemorrhage around labour using flow cytometry immunophenotyping
    Uriel, M.
    Subira, D.
    Plaza, J.
    Castanon, S.
    Canamares, M.
    Diaz Recasens, J.
    EUROPEAN JOURNAL OF OBSTETRICS & GYNECOLOGY AND REPRODUCTIVE BIOLOGY, 2010, 151 (01) : 20 - 25
  • [42] A Machine Learning Approach to the Classification of Acute Leukemias and Distinction From Nonneoplastic Cytopenias Using Flow Cytometry Data
    Monaghan, Sara A.
    Li, Jeng-Lin
    Liu, Yen-Chun
    Ko, Ming-Ya
    Boyiadzis, Michael
    Chang, Ting-Yu
    Wang, Yu-Fen
    Lee, Chi-Chun
    Swerdlow, Steven H.
    Ko, Bor-Sheng
    AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2022, 157 (04) : 546 - 553
  • [43] Automated prediction of acute promyelocytic leukemia from flow cytometry data using a graph neural network pipeline
    Cox, Andrew M.
    Kim, Daehwan
    Garcia, Rolando
    Fuda, Franklin S.
    Weinberg, Olga K.
    Chen, Weina
    AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2024, 161 (03) : 264 - 272
  • [44] De Novo Identification and Visualization of Important Cell Populations for Classic Hodgkin Lymphoma Using Flow Cytometry and Machine Learning
    Simonson, Paul D.
    Wu, Yue
    Wu, David
    Fromm, Jonathan R.
    Lee, Aaron Y.
    AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2021, 156 (06) : 1092 - 1102
  • [45] Fully Automatic Classification of Flow Cytometry Data
    Piotrowski, Bartosz Pawel
    Kursa, Miron Bartosz
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2018), 2018, 11177 : 3 - 12
  • [46] Phenotyping Immune Cells in Tumor and Healthy Tissue Using Flow Cytometry Data
    Chen, Ye
    Calvert, Ryan D.
    Azad, Ariful
    Rajwa, Bartek
    Fleet, James
    Ratliff, Timothy
    Pothen, Alex
    ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2018, : 73 - 78
  • [47] Clustering of cell populations in flow cytometry data using a combination of Gaussian mixtures
    Reiter, Michael
    Rota, Paolo
    Kleber, Florian
    Diem, Markus
    Groeneveld-Krentz, Stefanie
    Dworzak, Michael
    PATTERN RECOGNITION, 2016, 60 : 1029 - 1040
  • [48] Comparative Analysis of SVM and ANN Classifiers using Multilevel Fusion of Multi-Sensor Data in Urban Land Classification
    Vohra, Rubeena
    Tiwari, K. C.
    SENSING AND IMAGING, 2020, 21 (01):
  • [49] Statistical file matching of flow cytometry data
    Lee, Gyemin
    Finn, William
    Scott, Clayton
    JOURNAL OF BIOMEDICAL INFORMATICS, 2011, 44 (04) : 663 - 676
  • [50] Comparative Analysis of SVM and ANN Classifiers using Multilevel Fusion of Multi-Sensor Data in Urban Land Classification
    Rubeena Vohra
    K. C. Tiwari
    Sensing and Imaging, 2020, 21