Autogating in Flow Cytometry Data using SVM Classifiers for Bacterioplankton Identification

被引:0
|
作者
Cordeiro, Elionai Moura [1 ]
Wanderley, Bruno M. S. [1 ]
Amorim de Araujo, Daniel Sabino [1 ]
Doria Neto, Adriao Duarte [2 ]
机构
[1] Univ Fed Rio Grande do Norte, IMD, Programa Posgrad Bioinformat, Natal, RN, Brazil
[2] Univ Fed Rio Grande do Norte, CT, DCA, Dept Engn Comp & Automacao, Natal, RN, Brazil
来源
PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI) | 2017年
基金
巴西圣保罗研究基金会;
关键词
Flow Cytometry; Autogating; Support Vector Machine; Enviromental Analysis; Machine Learning;
D O I
10.1109/CSCI.2017.222
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper shows the results of a methodology proposal for bacterioplankton identification using a machine learning approach named SVM. Samples used were taken from 19 high elevated lakes located at Pyrenees Mountains. Samples generated 74 databases after been analyzed by a specialist to serve as input to the algorithm. We observed the viability of this method with 3.35% of error in identification. Furthermore, there is no isolated direct correlation between robustness of the prediction models and high complexity of the input data but, indeed, the algorithm settings, function cost and variables choice have an important role in the performance as well.
引用
收藏
页码:1265 / 1269
页数:5
相关论文
共 50 条
  • [21] Rapid identification of a narcotic plant Papaver bracteatum using flow cytometry
    Masako Aragane
    Daisuke Watanabe
    Jun’ichi Nakajima
    Masao Yoshida
    Masao Yoshizawa
    Tomohiro Abe
    Rei Nishiyama
    Jin Suzuki
    Takako Moriyasu
    Dai Nakae
    Hiroshi Sudo
    Hiroyuki Sato
    Atuyuki Hishida
    Nobuo Kawahara
    So Makabe
    Ikuo Nakamura
    Masahiro Mii
    Journal of Natural Medicines, 2014, 68 : 677 - 685
  • [22] Using flow cytometry for bacterioplankton community analysis as a complementary tool to Water Framework Directive to signal putatively impacted sites
    Santos, Martha
    Peixoto, Sara
    Pereira, Joana L.
    Luis, Ana T.
    Henriques, Isabel
    Goncalves, Fernando J. M.
    Pereira, Mario J.
    Oliveira, Helena
    Vidal, Tania
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 695
  • [23] flowSim: Near duplicate detection for flow cytometry data
    Montante, Sebastiano
    Chen, Yixuan
    Brinkman, Ryan R.
    CYTOMETRY PART A, 2023, 103 (11) : 889 - 901
  • [24] Metabolic activity of bacterioplankton communities assessed by flow cytometry and single carbon substrate utilization
    Jellett, JF
    Li, WKW
    Dickie, PM
    Boraie, A
    Kepkay, PE
    MARINE ECOLOGY PROGRESS SERIES, 1996, 136 (1-3) : 213 - 225
  • [25] Identification and characterization of neutrophil extracellular trap shapes in flow cytometry
    Ginley, Brandon
    Emmons, Tiffany
    Sasankan, Prabhu
    Urban, Constantin
    Segal, Brahm H.
    Sarder, Pinaki
    MEDICAL IMAGING 2017: DIGITAL PATHOLOGY, 2017, 10140
  • [26] Reducing SVM classification time using multiple, mirror classifiers
    Chen, JH
    Chen, CS
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (02): : 1173 - 1183
  • [27] Meta-Classification using SVM Classifiers for Text Documents
    Morariu, Daniel I.
    Vintan, Lucian N.
    Tresp, Volker
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 15, 2006, 15 : 222 - +
  • [28] Improvement of Reuse of Classifiers in CBIR Using SVM Active Learning
    Tekawa, Masaaki
    Hattori, Motonobu
    NEURAL INFORMATION PROCESSING: MODELS AND APPLICATIONS, PT II, 2010, 6444 : 598 - 605
  • [29] Pulse Identification Using SVM
    Puyol-Gruart, Josep
    Garcia Calves, Pere
    Vega, Jesus
    Teresa Ceballos, Maria
    Cobo, Bea
    Carrera, Francisco J.
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2021, 339 : 221 - 224
  • [30] Automated identification and characterisation of microbial populations using flow cytometry: the AIMS project
    Jonker, R
    Groben, R
    Tarran, G
    Medlin, L
    Wilkins, M
    Garcia, L
    Zabala, L
    Boddy, L
    SCIENTIA MARINA, 2000, 64 (02) : 225 - 234