Autogating in Flow Cytometry Data using SVM Classifiers for Bacterioplankton Identification

被引:0
|
作者
Cordeiro, Elionai Moura [1 ]
Wanderley, Bruno M. S. [1 ]
Amorim de Araujo, Daniel Sabino [1 ]
Doria Neto, Adriao Duarte [2 ]
机构
[1] Univ Fed Rio Grande do Norte, IMD, Programa Posgrad Bioinformat, Natal, RN, Brazil
[2] Univ Fed Rio Grande do Norte, CT, DCA, Dept Engn Comp & Automacao, Natal, RN, Brazil
来源
PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI) | 2017年
基金
巴西圣保罗研究基金会;
关键词
Flow Cytometry; Autogating; Support Vector Machine; Enviromental Analysis; Machine Learning;
D O I
10.1109/CSCI.2017.222
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper shows the results of a methodology proposal for bacterioplankton identification using a machine learning approach named SVM. Samples used were taken from 19 high elevated lakes located at Pyrenees Mountains. Samples generated 74 databases after been analyzed by a specialist to serve as input to the algorithm. We observed the viability of this method with 3.35% of error in identification. Furthermore, there is no isolated direct correlation between robustness of the prediction models and high complexity of the input data but, indeed, the algorithm settings, function cost and variables choice have an important role in the performance as well.
引用
收藏
页码:1265 / 1269
页数:5
相关论文
共 50 条
  • [1] Automated clustering of heterotrophic bacterioplankton in flow cytometry data
    Garcia, Francisca C.
    Lopez-Urrutia, Angel
    Moran, Xose Anxelu G.
    AQUATIC MICROBIAL ECOLOGY, 2014, 72 (02) : 175 - 185
  • [2] Evaluating misclassification ratios in region identification in flow cytometry data using an SVM based on neural network
    Adjouadi, M
    Zong, N
    8TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL IV, PROCEEDINGS: INFORMATION SYSTEMS, TECHNOLOGIES AND APPLICATIONS: I, 2004, : 184 - 189
  • [3] Improvised number identification using SVM and random forest classifiers
    Upadhyay, Anand
    Singh, Mahipal
    Yadav, Vivek Kumar
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2020, 41 (02) : 387 - 394
  • [4] Identification of Investigator Name Zones using SVM Classifiers and Heuristic Rules
    Kim, Jongwoo
    Le, Daniel X.
    Thoma, George R.
    2013 12TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), 2013, : 140 - 144
  • [5] Flow cytometry assessment of bacterioplankton in tropical marine environments
    Andrade, L
    Gonzalez, AM
    Araujo, FV
    Paranhos, R
    JOURNAL OF MICROBIOLOGICAL METHODS, 2003, 55 (03) : 841 - 850
  • [6] Rapid Cell Population Identification in Flow Cytometry Data
    Aghaeepour, Nima
    Nikolic, Radina
    Hoos, Holger H.
    Brinkman, Ryan R.
    CYTOMETRY PART A, 2011, 79A (01) : 6 - 13
  • [7] The identification of Pseudomonas aeruginosa persisters using flow cytometry
    Grandy, Shannen
    Raudonis, Renee
    Cheng, Zhenyu
    MICROBIOLOGY-SGM, 2022, 168 (10):
  • [8] Identification of contact and respiratory sensitizers using flow cytometry
    Goutet, M
    Pépin, E
    Langonné, I
    Huguet, N
    Ban, M
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2005, 205 (03) : 259 - 270
  • [9] Performance of NB and SVM Classifiers in Arabic Text Data
    Eljinini, Mohammad Ali H.
    Hadi, Wa'el Musa
    Mohammad, Adel Hamdan
    Ghatasheh, Mohammad
    BUSINESS TRANSFORMATION THROUGH INNOVATION AND KNOWLEDGE MANAGEMENT: AN ACADEMIC PERSPECTIVE, VOLS 3 AND 4, 2010, : 2593 - 2599
  • [10] Identification of eosinophils by flow cytometry
    Thurau, AM
    Schulz, U
    Wolf, V
    Krug, N
    Schauer, U
    CYTOMETRY, 1996, 23 (02): : 150 - 158