SECOND-ORDER ANALYSIS AND NUMERICAL APPROXIMATION FOR BANG-BANG BILINEAR CONTROL PROBLEMS

被引:22
作者
Casas, Eduardo [1 ]
Wachsmuth, Daniel [2 ]
Wachsmuth, Gerd [3 ]
机构
[1] Univ Cantabria, Dept Matemat Aplicada & Ciencias Comp, ETSI Ind & Telecomunicac, E-39005 Santander, Spain
[2] Univ Wurzburg, Inst Math, D-97074 Wurzburg, Germany
[3] Brandenburg Tech Univ Cottbus Senftenberg, Inst Math, D-03046 Cottbus, Germany
关键词
bang-bang control; bilinear controls; second-order conditions; sufficient optimality conditions; error analysis; SEMILINEAR ELLIPTIC-EQUATIONS; OPTIMALITY CONDITIONS; BOUNDARY CONTROL; CONVERGENCE; EQUIVALENCE;
D O I
10.1137/17M1139953
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider bilinear optimal control problems whose objective functionals do not depend on the controls. Hence, bang-bang solutions will appear. We investigate sufficient second-order conditions for bang-bang controls, which guarantee local quadratic growth of the objective functional in L-1. In addition, we prove that for controls that are not bang-bang, no such growth can be expected. Finally, we study the finite-element discretization and prove error estimates of bang-bang controls in L-1-norms.
引用
收藏
页码:4203 / 4227
页数:25
相关论文
共 31 条
[1]   Boundary control of semilinear elliptic equations with discontinuous leading coefficients and unbounded controls [J].
Alibert, JJ ;
Raymond, JP .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (3-4) :235-250
[2]  
[Anonymous], 1965, ANN I FOURIER, DOI DOI 10.5802/AIF.204
[3]  
[Anonymous], 2002, CLASSICS APPL MATH, DOI DOI 10.1137/1.9780898719208
[4]   Error estimates for the numerical approximation of a semilinear elliptic control problem [J].
Arada, N ;
Casas, E ;
Tröltzsch, F .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 23 (02) :201-229
[5]   Second order analysis of control-affine problems with scalar state constraint [J].
Aronna, M. S. ;
Bonnans, J. F. ;
Goh, B. S. .
MATHEMATICAL PROGRAMMING, 2016, 160 (1-2) :115-147
[6]  
Aronna M. S., 2016, OPTIMAL CONTROL INFI
[7]   BILINEAR SYSTEMS - APPEALING CLASS OF NEARLY LINEAR-SYSTEMS IN THEORY AND APPLICATIONS [J].
BRUNI, C ;
DIPILLO, G ;
KOCH, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (04) :334-348
[8]   BOUNDARY CONTROL OF SEMILINEAR ELLIPTIC-EQUATIONS WITH POINTWISE STATE CONSTRAINTS [J].
CASAS, E .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (04) :993-1006
[9]   Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints [J].
Casas, E .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :345-374
[10]  
Casas E, 2002, COMPUT APPL MATH, V21, P67