Statistical approximation properties of the Durrmeyer type q-Bleimann, Butzer, and Hahn operators

被引:2
作者
Cai, Qing-Bo [1 ,2 ]
Zeng, Xiao-Ming [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Quanzhou Normal Univ, Sch Math & Comp Sci, Quanzhou 362000, Peoples R China
基金
中国国家自然科学基金;
关键词
statistical convergence; q-integral; q-Bleimann; Butzer and Hahn operators; rates of statistical convergence; modulus of continuity; Lipschitz type maximal functions; CONVERGENCE;
D O I
10.1002/mma.1520
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a Durrmeyer-type generalization of q-Bleimann, Butzer, and Hahn operators based on q-integers and obtain statistical approximation properties of these operators with the help of the Korovkin type statistical approximation theorem. We also compute rates of statistical convergence of these q-type operators by means of the modulus of continuity and Lipschitz-type maximal function, respectively. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 13 条
[1]  
ABEL U, MATH ANAL APPROXIMAT, P1
[2]  
[Anonymous], 1990, Approximation Theory
[3]  
De Sole A., 2005, ATTI ACCAD NAZ SFMN, V16, P11
[4]  
Dogru O, 2006, PUBL MATH-DEBRECEN, V68, P199
[5]  
Duman O, 2003, MATH INEQUAL APPL, V6, P689
[6]   Statistical approximation properties of q-Bleimann, Butzer and Hahn operators [J].
Ersan, Sibel ;
Dogru, Ogun .
MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (7-8) :1595-1606
[7]  
FAST H., 1951, Colloq. Math., V2, P241
[8]  
Gadjiev A.D., 1999, Trans. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci, V19, P21
[9]   The rate of convergence of q-Durrmeyer operators for 0<q<1 [J].
Gupta, Vijay ;
Heping, Wang .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2008, 31 (16) :1946-1955
[10]  
Jackson F.H., 1910, Q. J. Pure Appl. Math, V41, P193, DOI DOI 10.1017/S0080456800002751