Bernoulli Forward-Backward Smoothing for Joint Target Detection and Tracking

被引:73
|
作者
Vo, Ba-Tuong [1 ]
Clark, Daniel [2 ]
Vo, Ba-Ngu [1 ]
Ristic, Branko [3 ]
机构
[1] Univ Western Australia, Sch Elect Elect & Comp Engn, Crawley, WA 6009, Australia
[2] Heriot Watt Univ, Sch Engn & Phys Sci, Joint Res Inst Signal & Image Proc, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Def Sci & Technol Org, ISR Div, Port Melbourne, Vic 3207, Australia
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会;
关键词
Detection; estimation; filtering; smoothing; tracking;
D O I
10.1109/TSP.2011.2158427
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this correspondence, we derive a forward-backward smoother for joint target detection and estimation and propose a sequential Monte Carlo implementation. We model the target by a Bernoulli random finite set since the target can be in one of two "present" or "absent" modes. Finite set statistics is used to derive the smoothing recursion. Our results indicate that smoothing has two distinct advantages over just using filtering: First, we are able to more accurately identify the appearance and disappearance of a target in the scene, and second, we can provide improved state estimates when the target exists.
引用
收藏
页码:4473 / 4477
页数:5
相关论文
共 50 条
  • [1] Forward-Backward Sequential Monte Carlo Smoothing for Joint Target Detection and Tracking
    Clark, Daniel E.
    Vo, Ba Tuong
    Vo, Ba Ngu
    FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 899 - +
  • [2] Generalised Labelled Multi-Bernoulli Forward-Backward Smoothing
    Beard, Michael
    Ba Tuong Vo
    Ba-Ngu Vo
    2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 688 - 694
  • [3] Bernoulli Forward-Backward Smoothing for Track-Before-Detect
    Wong, Shanhung
    Ba Tuong Vo
    Papi, Francesco
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (06) : 727 - 731
  • [4] IMM Forward Filtering and Backward Smoothing for Maneuvering Target Tracking
    Nadarajah, N.
    Tharmarasa, R.
    McDonald, Mike
    Kirubarajan, T.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2012, 48 (03) : 2673 - 2678
  • [5] A new formulation for nonlinear forward-backward smoothing
    Paul, Anindya S.
    Wan, Eric A.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3621 - 3624
  • [6] Forward-Backward Probability Hypothesis Density Smoothing
    Mahler, Ronald P. S.
    Ba-Tuong Vo
    Ba-Ngu Vo
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2012, 48 (01) : 707 - 728
  • [7] A Forward-Backward Labeled Multi-Bernoulli Smoother
    Liu, Rang
    Fan, Hongqi
    Xiao, Huaitie
    DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 16TH INTERNATIONAL CONFERENCE, 2020, 1003 : 244 - 252
  • [8] Microbubble tracking with a forward-backward strategy
    Taghavi, Iman
    Andersen, Sofie Bech
    Schou, Mikkel
    Nielsen, Michael Bachmann
    Sorensen, Charlotte Mehlin
    Stuart, Matthias Bo
    Jensen, Jorgen Arendt
    MEDICAL IMAGING 2022: ULTRASONIC IMAGING AND TOMOGRAPHY, 2022, 12038
  • [9] Closed-Form Solutions to Forward-Backward Smoothing
    Ba-Ngu Vo
    Ba-Tuong Vo
    Mahler, Ronald P. S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (01) : 2 - 17
  • [10] Merging-based forward-backward smoothing on Gaussian mixtures
    Rahmathullah, Abu Sajana
    Svensson, Lennart
    Svensson, Daniel
    2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,