A Morse-Sard theorem for the distance function on Riemannian manifolds

被引:15
作者
Rifford, L [1 ]
机构
[1] Univ Lyon 1, Inst Girard Desargues, F-69622 Villeurbanne, France
关键词
Riemannian Manifold; Distance Function; Lebesgue Measure; Measure Zero; Complete Riemannian Manifold;
D O I
10.1007/s00229-003-0436-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the set of critical values of the distance function from a submanifold of a complete Riemannian manifold is of Lebesgue measure zero. In this way, we extend a result of Itoh and Tanaka.
引用
收藏
页码:251 / 265
页数:15
相关论文
共 19 条
[1]  
[Anonymous], 1998, ERGEBNISSE MATH IHRE
[2]  
Clarke F.H., 1998, GRAD TEXT M, V178
[3]   GENERALIZED GRADIENTS AND APPLICATIONS [J].
CLARKE, FH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 205 (APR) :247-262
[4]  
COSTE M, 1982, LECT NOTES MATH, V959, P109
[5]  
Ferry S., 1975, Fund. Math., V90, P199, DOI DOI 10.4064/FM-90-3-199-210
[6]   TUBULAR-NEIGHBORHOODS IN EUCLIDEAN SPACES [J].
FU, JHG .
DUKE MATHEMATICAL JOURNAL, 1985, 52 (04) :1025-1046
[7]  
Itoh J, 2000, T AM MATH SOC, V353, P21
[8]   A Sard theorem for the distance function [J].
Itoh, J ;
Tanaka, M .
MATHEMATISCHE ANNALEN, 2001, 320 (01) :1-10
[9]  
Lee J. M., 1997, GRAD TEXTS MATH, V176
[10]  
Lojasiewicz S., 1965, IHES LECT NOTES