Evaluation of K-SVD with Different Embedded Sparse Representation Algorithms

被引:0
作者
Liu, Jingjing [1 ]
Liu, Wanquan [2 ]
Li, Qilin [2 ]
Ma, Shiwei [1 ]
Chen, Guanghua [1 ]
机构
[1] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200041, Peoples R China
[2] Curtin Univ, Dept Comp, Perth, WA, Australia
来源
2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD) | 2016年
关键词
K-SVD algorithm; Dictionary; Sparse representation; Pursuit methods; DISCRIMINATIVE DICTIONARY; IMAGE; RECOGNITION; FOCUSS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The K-SVD algorithm is a powerful tool in finding an adaptive dictionary for a set of signals via using the sparse representation optimization and constrained singular value decomposition. In this paper, we first review the original K-SVD algorithm as well as some sparse representation algorithms including OMP, Lasso and recently proposed IITH. Secondly, we embed the Lasso and IITH sparse representation algorithms into the K-SVD process and establish two new different K-SVD algorithms. Finally, we have done extensive experiments to evaluate the performances of these derived K-SVD algorithms with different pursuit methods and these experiments show that the K-SVD with IITH has distinctive advantages in computational cost and signal recovery performance while the K-SVD with Lasso is not sensitive to initial conditions.
引用
收藏
页码:426 / 432
页数:7
相关论文
共 27 条
[1]   Charged-particle multiplicities in pp interactions at √s=900 GeV measured with the ATLAS detector at the LHC ATLAS Collaboration [J].
Aad, G. ;
Abat, E. ;
Abbott, B. ;
Abdallah, J. ;
Abdelalim, A. A. ;
Abdesselam, A. ;
Abdinov, O. ;
Abi, B. ;
Abolins, M. ;
Abramowicz, H. ;
Abreu, H. ;
Acerbi, E. ;
Acharya, B. S. ;
Ackers, M. ;
Adams, D. L. ;
Addy, T. N. ;
Adelman, J. ;
Aderholz, M. ;
Adorisio, C. ;
Adragna, P. ;
Adye, T. ;
Aefsky, S. ;
Aguilar-Saavedra, J. A. ;
Aharrouche, M. ;
Ahlen, S. P. ;
Ahles, F. ;
Ahmad, A. ;
Ahmed, H. ;
Ahsan, M. ;
Aielli, G. ;
Akdogan, T. ;
Akesson, P. F. ;
Akesson, T. P. A. ;
Akimoto, G. ;
Akimov, A. V. ;
Aktas, A. ;
Alam, M. S. ;
Alam, M. A. ;
Albert, J. ;
Albrand, S. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Aleppo, M. ;
Alessandria, F. ;
Alexa, C. ;
Alexander, G. ;
Alexandre, G. ;
Alexopoulos, T. ;
Alhroob, M. ;
Aliev, M. .
PHYSICS LETTERS B, 2010, 688 (01) :21-42
[2]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[3]  
[Anonymous], INFORM THEORY APPL
[4]   Normalized Iterative Hard Thresholding: Guaranteed Stability and Performance [J].
Blumensath, Thomas ;
Davies, Mike E. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2010, 4 (02) :298-309
[5]   Iterative hard thresholding for compressed sensing [J].
Blumensath, Thomas ;
Davies, Mike E. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (03) :265-274
[6]   Iterative Thresholding for Sparse Approximations [J].
Blumensath, Thomas ;
Davies, Mike E. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :629-654
[7]   A New and Improved Quantitative Recovery Analysis for Iterative Hard Thresholding Algorithms in Compressed Sensing [J].
Cartis, Coralia ;
Thompson, Andrew .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (04) :2019-2042
[8]  
Chen SSB, 2001, SIAM REV, V43, P129, DOI [10.1137/S003614450037906X, 10.1137/S1064827596304010]
[9]   Adaptive greedy approximations [J].
Davis G. ;
Mallat S. ;
Avellaneda M. .
Constructive Approximation, 1997, 13 (1) :57-98
[10]   Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm [J].
Gorodnitsky, IF ;
Rao, BD .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (03) :600-616