CellDART: cell type inference by domain adaptation of single-cell and spatial transcriptomic data

被引:47
作者
Bae, Sungwoo [1 ,2 ]
Na, Kwon Joong [3 ,4 ]
Koh, Jaemoon [5 ]
Lee, Dong Soo [1 ,2 ,6 ]
Choi, Hongyoon [2 ,6 ]
Kim, Young Tae [3 ,4 ]
机构
[1] Seoul Natl Univ, Grad Sch Convergence Sci & Technol, Dept Mol Med & Biopharmaceut Sci, Seoul, South Korea
[2] Seoul Natl Univ Hosp, Dept Nucl Med, Seoul, South Korea
[3] Seoul Natl Univ Hosp, Dept Thorac & Cardiovasc Surg, Seoul, South Korea
[4] Seoul Natl Univ, Canc Res Inst, Coll Med, Seoul, South Korea
[5] Seoul Natl Univ Hosp, Dept Pathol, Seoul, South Korea
[6] Seoul Natl Univ, Dept Nucl Med, Coll Med, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
SEQ; EXPRESSION; DIVERSITY;
D O I
10.1093/nar/gkac084
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Deciphering the cellular composition in genome-wide spatially resolved transcriptomic data is a critical task to clarify the spatial context of cells in a tissue. In this study, we developed a method, CellDART, which estimates the spatial distribution of cells defined by single-cell level data using domain adaptation of neural networks and applied it to the spatial mapping of human lung tissue. The neural network that predicts the cell proportion in a pseudospot, a virtual mixture of cells from single-cell data, is translated to decompose the cell types in each spatial barcoded region. First, CellDART was applied to a mouse brain and a human dorsolateral prefrontal cortex tissue to identify cell types with a layer-specific spatial distribution. Overall, the proposed approach showed more stable and higher accuracy with short execution time compared to other computational methods to predict the spatial location of excitatory neurons. CellDART was capable of decomposing cellular proportion in mouse hippocampus Slide-seq data. Furthermore, CellDART elucidated the cell type predominance defined by the human lung cell atlas across the lung tissue compartments and it corresponded to the known prevalent cell types. CellDART is expected to help to elucidate the spatial heterogeneity of cells and their close interactions in various tissues.
引用
收藏
页数:14
相关论文
共 48 条
[1]   Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography [J].
Andersson, Alma ;
Bergenstrahle, Joseph ;
Asp, Michaela ;
Bergenstrahle, Ludvig ;
Jurek, Aleksandra ;
Fernandez Navarro, Jose ;
Lundeberg, Joakim .
COMMUNICATIONS BIOLOGY, 2020, 3 (01)
[2]   Identification of region-specific astrocyte subtypes at single cell resolution [J].
Batiuk, Mykhailo Y. ;
Martirosyan, Araks ;
Wahis, Jerome ;
de Vin, Filip ;
Marneffe, Catherine ;
Kusserow, Carola ;
Koeppen, Jordan ;
Viana, Joao Filipe ;
Oliveira, Joao Filipe ;
Voet, Thierry ;
Ponting, Chris P. ;
Belgard, T. Grant ;
Holt, Matthew G. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[3]   Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map [J].
Bayraktar, Omer Ali ;
Bartels, Theresa ;
Holmqvist, Staffan ;
Kleshchevnikov, Vitalii ;
Martirosyan, Araks ;
Polioudakis, Damon ;
Ben Haim, Lucile ;
Young, Adam M. H. ;
Batiuk, Mykhailo Y. ;
Prakash, Kirti ;
Brown, Alexander ;
Roberts, Kenny ;
Paredes, Mercedes F. ;
Kawaguchi, Riki ;
Stockley, John H. ;
Sabeur, Khalida ;
Chang, Sandra M. ;
Huang, Eric ;
Hutchinson, Peter ;
Ullian, Erik M. ;
Hemberg, Martin ;
Coppola, Giovanni ;
Holt, Matthew G. ;
Geschwind, Daniel H. ;
Rowitch, David H. .
NATURE NEUROSCIENCE, 2020, 23 (04) :500-+
[4]   Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity [J].
Berglund, Emelie ;
Maaskola, Jonas ;
Schultz, Niklas ;
Friedrich, Stefanie ;
Marklund, Maja ;
Bergenstrahle, Joseph ;
Tarish, Firas ;
Tanoglidi, Anna ;
Vickovic, Sanja ;
Larsson, Ludvig ;
Salmen, Fredrik ;
Ogris, Christoph ;
Wallenborg, Karolina ;
Lagergren, Jens ;
Stahl, Patrik ;
Sonnhammer, Erik ;
Helleday, Thomas ;
Lundeberg, Joakim .
NATURE COMMUNICATIONS, 2018, 9
[5]   Robust decomposition of cell type mixtures in spatial transcriptomics [J].
Cable, Dylan M. ;
Murray, Evan ;
Zou, Luli S. ;
Goeva, Aleksandrina ;
Macosko, Evan Z. ;
Chen, Fei ;
Irizarry, Rafael A. .
NATURE BIOTECHNOLOGY, 2022, 40 (04) :517-+
[6]   Exploring inflammatory signatures in arthritic joint biopsies with Spatial Transcriptomics [J].
Carlberg, Konstantin ;
Korotkova, Marina ;
Larsson, Ludvig ;
Catrina, Anca, I ;
Stahl, Patrik L. ;
Malmstrom, Vivianne .
SCIENTIFIC REPORTS, 2019, 9 (1)
[7]   Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons [J].
Cembrowski, Mark S. ;
Wang, Lihua ;
Sugino, Ken ;
Shields, Brenda C. ;
Spruston, Nelson .
ELIFE, 2016, 5
[8]   Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer's Disease [J].
Chen, Wei-Ting ;
Lu, Ashley ;
Craessaerts, Katleen ;
Pavie, Benjamin ;
Frigerio, Carlo Sala ;
Corthout, Nikky ;
Qian, Xiaoyan ;
Lalakova, Jana ;
Kuhnemund, Malte ;
Voytyuk, Iryna ;
Wolfs, Leen ;
Mancuso, Renzo ;
Salta, Evgenia ;
Balusu, Sriram ;
Snellinx, An ;
Munck, Sebastian ;
Jurek, Aleksandra ;
Navarro, Jose Fernandez ;
Saido, Takaomi C. ;
Huitinga, Inge ;
Lundeberg, Joakim ;
Fiers, Mark ;
De Strooper, Bart .
CELL, 2020, 182 (04) :976-+
[9]   Microscopic examination of spatial transcriptome using Seq-Scope [J].
Cho, Chun-Seok ;
Xi, Jingyue ;
Si, Yichen ;
Park, Sung-Rye ;
Hsu, Jer-En ;
Kim, Myungjin ;
Jun, Goo ;
Kang, Hyun Min ;
Lee, Jun Hee .
CELL, 2021, 184 (13) :3559-+
[10]   Tumour heterogeneity and resistance to cancer therapies [J].
Dagogo-Jack, Ibiayi ;
Shaw, Alice T. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2018, 15 (02) :81-94