CellDART: cell type inference by domain adaptation of single-cell and spatial transcriptomic data

被引:40
作者
Bae, Sungwoo [1 ,2 ]
Na, Kwon Joong [3 ,4 ]
Koh, Jaemoon [5 ]
Lee, Dong Soo [1 ,2 ,6 ]
Choi, Hongyoon [2 ,6 ]
Kim, Young Tae [3 ,4 ]
机构
[1] Seoul Natl Univ, Grad Sch Convergence Sci & Technol, Dept Mol Med & Biopharmaceut Sci, Seoul, South Korea
[2] Seoul Natl Univ Hosp, Dept Nucl Med, Seoul, South Korea
[3] Seoul Natl Univ Hosp, Dept Thorac & Cardiovasc Surg, Seoul, South Korea
[4] Seoul Natl Univ, Canc Res Inst, Coll Med, Seoul, South Korea
[5] Seoul Natl Univ Hosp, Dept Pathol, Seoul, South Korea
[6] Seoul Natl Univ, Dept Nucl Med, Coll Med, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
SEQ; EXPRESSION; DIVERSITY;
D O I
10.1093/nar/gkac084
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Deciphering the cellular composition in genome-wide spatially resolved transcriptomic data is a critical task to clarify the spatial context of cells in a tissue. In this study, we developed a method, CellDART, which estimates the spatial distribution of cells defined by single-cell level data using domain adaptation of neural networks and applied it to the spatial mapping of human lung tissue. The neural network that predicts the cell proportion in a pseudospot, a virtual mixture of cells from single-cell data, is translated to decompose the cell types in each spatial barcoded region. First, CellDART was applied to a mouse brain and a human dorsolateral prefrontal cortex tissue to identify cell types with a layer-specific spatial distribution. Overall, the proposed approach showed more stable and higher accuracy with short execution time compared to other computational methods to predict the spatial location of excitatory neurons. CellDART was capable of decomposing cellular proportion in mouse hippocampus Slide-seq data. Furthermore, CellDART elucidated the cell type predominance defined by the human lung cell atlas across the lung tissue compartments and it corresponded to the known prevalent cell types. CellDART is expected to help to elucidate the spatial heterogeneity of cells and their close interactions in various tissues.
引用
收藏
页数:14
相关论文
共 48 条
  • [1] Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography
    Andersson, Alma
    Bergenstrahle, Joseph
    Asp, Michaela
    Bergenstrahle, Ludvig
    Jurek, Aleksandra
    Fernandez Navarro, Jose
    Lundeberg, Joakim
    [J]. COMMUNICATIONS BIOLOGY, 2020, 3 (01)
  • [2] Identification of region-specific astrocyte subtypes at single cell resolution
    Batiuk, Mykhailo Y.
    Martirosyan, Araks
    Wahis, Jerome
    de Vin, Filip
    Marneffe, Catherine
    Kusserow, Carola
    Koeppen, Jordan
    Viana, Joao Filipe
    Oliveira, Joao Filipe
    Voet, Thierry
    Ponting, Chris P.
    Belgard, T. Grant
    Holt, Matthew G.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [3] Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map
    Bayraktar, Omer Ali
    Bartels, Theresa
    Holmqvist, Staffan
    Kleshchevnikov, Vitalii
    Martirosyan, Araks
    Polioudakis, Damon
    Ben Haim, Lucile
    Young, Adam M. H.
    Batiuk, Mykhailo Y.
    Prakash, Kirti
    Brown, Alexander
    Roberts, Kenny
    Paredes, Mercedes F.
    Kawaguchi, Riki
    Stockley, John H.
    Sabeur, Khalida
    Chang, Sandra M.
    Huang, Eric
    Hutchinson, Peter
    Ullian, Erik M.
    Hemberg, Martin
    Coppola, Giovanni
    Holt, Matthew G.
    Geschwind, Daniel H.
    Rowitch, David H.
    [J]. NATURE NEUROSCIENCE, 2020, 23 (04) : 500 - +
  • [4] Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity
    Berglund, Emelie
    Maaskola, Jonas
    Schultz, Niklas
    Friedrich, Stefanie
    Marklund, Maja
    Bergenstrahle, Joseph
    Tarish, Firas
    Tanoglidi, Anna
    Vickovic, Sanja
    Larsson, Ludvig
    Salmen, Fredrik
    Ogris, Christoph
    Wallenborg, Karolina
    Lagergren, Jens
    Stahl, Patrik
    Sonnhammer, Erik
    Helleday, Thomas
    Lundeberg, Joakim
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [5] Robust decomposition of cell type mixtures in spatial transcriptomics
    Cable, Dylan M.
    Murray, Evan
    Zou, Luli S.
    Goeva, Aleksandrina
    Macosko, Evan Z.
    Chen, Fei
    Irizarry, Rafael A.
    [J]. NATURE BIOTECHNOLOGY, 2022, 40 (04) : 517 - +
  • [6] Exploring inflammatory signatures in arthritic joint biopsies with Spatial Transcriptomics
    Carlberg, Konstantin
    Korotkova, Marina
    Larsson, Ludvig
    Catrina, Anca, I
    Stahl, Patrik L.
    Malmstrom, Vivianne
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [7] Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons
    Cembrowski, Mark S.
    Wang, Lihua
    Sugino, Ken
    Shields, Brenda C.
    Spruston, Nelson
    [J]. ELIFE, 2016, 5
  • [8] Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer's Disease
    Chen, Wei-Ting
    Lu, Ashley
    Craessaerts, Katleen
    Pavie, Benjamin
    Frigerio, Carlo Sala
    Corthout, Nikky
    Qian, Xiaoyan
    Lalakova, Jana
    Kuhnemund, Malte
    Voytyuk, Iryna
    Wolfs, Leen
    Mancuso, Renzo
    Salta, Evgenia
    Balusu, Sriram
    Snellinx, An
    Munck, Sebastian
    Jurek, Aleksandra
    Navarro, Jose Fernandez
    Saido, Takaomi C.
    Huitinga, Inge
    Lundeberg, Joakim
    Fiers, Mark
    De Strooper, Bart
    [J]. CELL, 2020, 182 (04) : 976 - +
  • [9] Microscopic examination of spatial transcriptome using Seq-Scope
    Cho, Chun-Seok
    Xi, Jingyue
    Si, Yichen
    Park, Sung-Rye
    Hsu, Jer-En
    Kim, Myungjin
    Jun, Goo
    Kang, Hyun Min
    Lee, Jun Hee
    [J]. CELL, 2021, 184 (13) : 3559 - +
  • [10] Tumour heterogeneity and resistance to cancer therapies
    Dagogo-Jack, Ibiayi
    Shaw, Alice T.
    [J]. NATURE REVIEWS CLINICAL ONCOLOGY, 2018, 15 (02) : 81 - 94