Influence of femtosecond laser pulse width on performance of terahertz time domain spectrometer

被引:0
作者
Li Guo-chao [1 ]
Wu Bin [1 ,2 ]
Yang Yan-zhao [1 ]
Liu Hong-yuan [1 ]
Wang Hong-chao [1 ]
机构
[1] CETC, Res Inst 41, Qingdao 266555, Peoples R China
[2] Sci & Technol Elect Test & Measurement Lab, Qingdao 266555, Peoples R China
来源
FIFTH CONFERENCE ON FRONTIERS IN OPTICAL IMAGING TECHNOLOGY AND APPLICATIONS (FOI 2018) | 2018年 / 10832卷
关键词
Terahertz time-domain spectroscopy; Photoconductive antenna; Chromatic dispersion compensation; Femto-second laser; Pulse width; SPECTROSCOPY; RADIATION; EMISSION;
D O I
10.1117/12.2506727
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, a series of experiments on dispersion compensation in terahertz time-domain spectrometers are performed. The Influence of femtosecond laser pulse width on the performance of terahertz time-domain spectrometers is systematically studied. A terahertz time-domain spectroscopy system was constructed using fiber coupled photoconductive antennas. Through the adjustment of the grating spacing and the replacement of different lengths of fiber cable, the laser pulse width acting on the antenna was multiplexed from 130fs to 2.46ps, and the performance of the terahertz time domain spectroscopy system under different pulse widths was tested. The experimental results show that, with the increase of the femtosecond laser pulse width, the signal intensity of the terahertz time domain waveform and the high frequency part of the terahertz spectrum decrease significantly. Quantitative comparative analysis was performed using the average signal-to-noise ratio, validating the necessity of using dispersion compensation and femtosecond laser pulse width testing in the terahertz time-domain spectroscopy system.
引用
收藏
页数:6
相关论文
共 14 条
[1]  
Bao R M, 2005, INFRARED LASER ENG, V44, P1823
[2]   Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection [J].
Cai, Y ;
Brener, I ;
Lopata, J ;
Wynn, J ;
Pfeiffer, L ;
Stark, JB ;
Wu, Q ;
Zhang, XC ;
Federici, JF .
APPLIED PHYSICS LETTERS, 1998, 73 (04) :444-446
[3]   Active terahertz metamaterial devices [J].
Chen, Hou-Tong ;
Padilla, Willie J. ;
Zide, Joshua M. O. ;
Gossard, Arthur C. ;
Taylor, Antoinette J. ;
Averitt, Richard D. .
NATURE, 2006, 444 (7119) :597-600
[4]   A metamaterial solid-state terahertz phase modulator [J].
Chen, Hou-Tong ;
Padilla, Willie J. ;
Cich, Michael J. ;
Azad, Abul K. ;
Averitt, Richard D. ;
Taylor, Antoinette J. .
NATURE PHOTONICS, 2009, 3 (03) :148-151
[5]   Analysis of terahertz pulses from large-aperture biased semi-insulating and arsenic-ion-implanted GaAs antennas [J].
Chou, Rone-Hwa ;
Liu, Tze-An ;
Pan, Ci-Ling .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (05)
[6]  
Guo Lantao, 2013, Infrared and Laser Engineering, V42, P51
[7]   A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy [J].
Han, PY ;
Tani, M ;
Usami, M ;
Kono, S ;
Kersting, R ;
Zhang, XC .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (04) :2357-2359
[8]   Terahertz spectroscopy and imaging - Modern techniques and applications [J].
Jepsen, Peter Uhd ;
Cooke, David G. ;
Koch, Martin .
LASER & PHOTONICS REVIEWS, 2011, 5 (01) :124-166
[9]  
Kai-Jun M.U., 2009, J CHINA ACAD ELECT I, V25, P3, DOI [10.3969/j.issn.1673-5692.2009.03.001, DOI 10.3969/J.ISSN.1673-5692.2009.03.001]
[10]   Adaptive stochastic resonance [J].
Mitaim, S ;
Kosko, B .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2152-2183