On the latticity of projection and antiprojection sets in Orlicz-Musielak spaces

被引:2
作者
Micherda, B. [1 ]
机构
[1] Univ Bielsko Biala, Dept Math & Comp Sci, PL-43309 Bielsko Biala, Poland
关键词
projection set; antiprojection set; latticially closed set; Orlicz-Musielak space;
D O I
10.1007/s10474-007-7014-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the latticial structure of projection sets and antiprojection sets in Orlicz-Musielak spaces L-Phi, with the distance given by modular rho(Phi) and classical F-norms generated by rho(Phi). In particular, we show that the case of Amemiya F-norm is essentially different from others. This extends results given for sets of best approximants by Landers and Rogge, Kilmer and Kozlowski, and Mazzone.
引用
收藏
页码:165 / 180
页数:16
相关论文
共 14 条
[1]   On some proximinal subspaces of modular spaces [J].
Granero, AS ;
Hudzik, H .
ACTA MATHEMATICA HUNGARICA, 1999, 85 (1-2) :59-79
[2]  
Isac G, 1998, MATH INEQUAL APPL, V1, P85
[3]   On the property of four elements in modular spaces [J].
Isac, G ;
Lewicki, G .
ACTA MATHEMATICA HUNGARICA, 1999, 83 (04) :293-301
[4]   BEST APPROXIMANTS IN MODULAR FUNCTION-SPACES [J].
KILMER, SJ ;
KOZLOWSKI, WM ;
LEWICKI, G .
JOURNAL OF APPROXIMATION THEORY, 1990, 63 (03) :338-367
[5]  
KILMER SJ, 1991, COMMENT MATH U CAROL, V32, P241
[6]  
KILMER SJ, 1991, COMMENT MATH HELV, V31, P59
[7]  
Kuczma M, 1985, An introduction to the theory of functional equations and inequalities
[8]   STRICTLY AND UNIFORMLY MONOTONE MUSIELAK-ORLICZ SPACES AND APPLICATIONS TO BEST APPROXIMATION [J].
KURC, W .
JOURNAL OF APPROXIMATION THEORY, 1992, 69 (02) :173-187
[9]   A CHARACTERIZATION OF BEST PHI-APPROXIMANTS [J].
LANDERS, D ;
ROGGE, L .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 267 (01) :259-263
[10]   BEST APPROXIMANTS IN LPHI-SPACES [J].
LANDERS, D ;
ROGGE, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 51 (02) :215-237