Lie-Hamilton systems on the plane: Properties, classification and applications

被引:29
作者
Ballesteros, A. [1 ]
Blasco, A. [1 ]
Herranz, F. J. [1 ]
de Lucas, J. [2 ]
Sardon, C. [3 ]
机构
[1] Univ Burgos, Dept Phys, Burgos 09001, Spain
[2] Univ Warsaw, Dept Math Methods Phys, PL-02093 Warsaw, Poland
[3] Univ Salamanca, Dept Fundamental Phys, E-37008 Salamanca, Spain
关键词
Complex Riccati equations; Lie system; Lotka-Volterra model; Milne-Pinney equations; Hamiltonian planar vector field; Symplectic structure; DIFFERENTIAL-EQUATIONS; VECTOR-FIELDS; OPERATORS; ALGEBRAS;
D O I
10.1016/j.jde.2014.12.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Lie Hamilton systems on the plane, i.e. systems of first-order differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional real Lie algebra of planar Hamiltonian vector fields with respect to a Poisson structure. We start with the local classification of finite-dimensional real Lie algebras of vector fields on the plane obtained in Gonzalez-Lopez, Kamran, and Olver (1992) [23] and we interpret their results as a local classification of Lie systems. By determining which of these real Lie algebras consist of Hamiltonian vector fields relative to a Poisson structure, we provide the complete local classification of Lie Hamilton systems on the plane. We present and study through our results new Lie Hamilton systems of interest which are used to investigate relevant non-autonomous differential equations, e.g. we get explicit local diffeomorphisms between such systems. We also analyse biomathematical models, the Milne-Pinney equations, second-order Kummer-Schwarz equations, complex Riccati equations and Buchdahl equations. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:2873 / 2907
页数:35
相关论文
共 40 条
  • [1] Integrability in time-dependent systems with one degree of freedom
    Angelo, R. M.
    Duzzioni, E. I.
    Ribeiro, A. D.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (05)
  • [2] (1+1) Schrodinger Lie bialgebras and their Poisson-Lie groups
    Ballesteros, A
    Herranz, FJ
    Parashar, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (17): : 3445 - 3465
  • [3] From constants of motion to superposition rules for Lie-Hamilton systems
    Ballesteros, A.
    Carinena, J. F.
    Herranz, F. J.
    de Lucas, J.
    Sardon, C.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (28)
  • [4] N-dimensional integrability from two-photon coalgebra symmetry
    Ballesteros, Angel
    Blasco, Alfonso
    Herranz, Francisco J.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (26)
  • [5] A REALTIVISTIC FLUID SPHERE RESEMBLING EMDEN POLYTROPE OF INDEX 5
    BUCHDAHL, HA
    [J]. ASTROPHYSICAL JOURNAL, 1964, 140 (04) : 1512 - &
  • [6] Mobius transformations and periodic solutions of complex Riccati equations
    Campos, J
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1997, 29 : 205 - 215
  • [7] Carinena J., 2000, LIE SCHEFFERS SYSTEM
  • [8] LIE-HAMILTON SYSTEMS: THEORY AND APPLICATIONS
    Carinena, J. F.
    De Lucas, J.
    Sardon, C.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (09)
  • [9] Superposition rules for higher order systems and their applications
    Carinena, J. F.
    Grabowski, J.
    de Lucas, J.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (18)
  • [10] Lie systems: theory, generalisations, and applications
    Carinena, J. F.
    de Lucas, J.
    [J]. DISSERTATIONES MATHEMATICAE, 2011, (479) : 6 - +