Hamilton-Jacobi Equations on Graph and Applications

被引:9
作者
Shu, Yan [1 ]
机构
[1] Modelisat Aleatoire Paris Ouest Nanterre La Def M, Nanterre, France
关键词
Hamilton-Jacobi equations; Weak-transport entropy inequalities; Modified Log-Sob inequalities on graphs; LOGARITHMIC SOBOLEV INEQUALITIES; MARKOV-CHAINS; SPACES; TRANSPORT; ENTROPY;
D O I
10.1007/s11118-017-9628-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces a notion of gradient and an infimal-convolution operator that extend properties of solutions of Hamilton Jacobi equations to more general spaces, in particular to graphs. As a main application, the hypercontractivity of this class of infimal-convolution operators is connected to some discrete version of the log-Sobolev inequality and to a discrete version of Talagrand's transport inequality.
引用
收藏
页码:125 / 157
页数:33
相关论文
共 37 条
[1]   The logarithmic Sobolev constant of the lamplighter [J].
Abakumov, Evgeny ;
Beaulieu, Anne ;
Blanchard, Francois ;
Fradelizi, Matthieu ;
Gozlan, Nathael ;
Host, Bernard ;
Jeantheau, Thiery ;
Kobylanski, Magdalena ;
Lecue, Guillaume ;
Martinez, Miguel ;
Meyer, Mathieu ;
Mourgues, Marie-Helene ;
Portal, Frederic ;
Ribaud, Francis ;
Roberto, Cyril ;
Romon, Pascal ;
Roth, Julien ;
Samson, Paul-Marie ;
Vandekerkhove, Pierre ;
Youssfi, Abdellah .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 399 (02) :576-585
[2]   Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below [J].
Ambrosio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
INVENTIONES MATHEMATICAE, 2014, 195 (02) :289-391
[3]  
Ane C., 2000, SURLES INGALITES SOB, V10
[4]   Functional Inequalities and Hamilton-Jacobi Equations in Geodesic Spaces [J].
Balogh, Zoltan M. ;
Engulatov, Alexandre ;
Hunziker, Lars ;
Maasalo, Outi Elina .
POTENTIAL ANALYSIS, 2012, 36 (02) :317-337
[5]  
BARBU V., 1983, Hamilton-Jacobi Equations in Hilbert Spaces, V86
[6]  
Bernard P., 1999, Lectures on probability theory and statistics, V1717, P93
[7]   Poincare's inequalities and Talagrand's concentration phenomenon for the exponential distribution [J].
Bobkov, S ;
Ledoux, M .
PROBABILITY THEORY AND RELATED FIELDS, 1997, 107 (03) :383-400
[8]   Modified logarithmic Sobolev inequalities in discrete settings [J].
Bobkov, Sergey G. ;
Tetali, Prasad .
JOURNAL OF THEORETICAL PROBABILITY, 2006, 19 (02) :289-336
[9]   Hypercontractivity of Hamilton-Jacobi equations [J].
Bobkov, SG ;
Gentil, I ;
Ledoux, M .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07) :669-696
[10]   A comparison among various notions of viscosity solution for Hamilton-Jacobi equations on networks [J].
Camilli, Fabio ;
Marchi, Claudio .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (01) :112-118