Facile synthesis of ZnO nanoflowers/reduced graphene oxide nanocomposite using zinc hexacyanoferrate for supercapacitor applications

被引:45
作者
Subramani, K. [1 ,2 ]
Sathish, M. [1 ,2 ]
机构
[1] CSIR, Cent Electrochem Res Inst, Funct Mat Div, Karaikkudi 630003, Tamil Nadu, India
[2] CSIR, Cent Electrochem Res Inst, Acad Sci & Innovat Res AcSIR, Karaikkudi 630003, Tamil Nadu, India
关键词
Zinc oxide; Nanoflowers; Graphene; Nanocomposite; Energy storage; Supercapacitor; HIGH-ENERGY;
D O I
10.1016/j.matlet.2018.10.111
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We demonstrated a facile and scalable synthesis of crystalline hexagonal ZnO nanoflowers/reduced graphene oxide nanocomposite (ZnO-NFs/RGO NCs) via direct chemical decomposition of zinc hexacyanoferrate (ZnHCF) over reduced graphene oxide (RGO) nanosheets. The phase formation and degree of functionalization of as-synthesized ZnO-NFs/RGO NCs was confirmed from XRD and FT-IR spectroscopic analysis, respectively. The hierarchical ZnO nanoflowers consist of 2D nanosheets wrapped with RGO nanosheets was confirmed from FE-SEM and HR-TEM images. The synthesized ZnO-NFs/RGO NCs exhibits a high specific capacitance of 203 F g(-1) at the current density of 1 Ag-1 with good rate performance and also showed an excellent electrochemical stability of 98% for 10,000 cycles at high current density of 20 A g(-1). (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:424 / 427
页数:4
相关论文
共 11 条
[1]   Graphene-Polymer//Graphene-Manganese Oxide Nanocomposites-Based Asymmetric High Energy Supercapacitor with 1.8 V Cell Voltage in Aqueous Solution [J].
Amutha, Balasubramanian ;
Subramani, Kaipannan ;
Reddy, Pula Nagesh ;
Sathish, Marappan .
CHEMISTRYSELECT, 2017, 2 (33) :10754-10761
[2]  
Conway B. E., 1999, ELECTROCHEMICAL SUPE, DOI [10.1007/978-1-4757-3058-6, DOI 10.1007/978-1-4757-3058-6]
[3]   Synthesis of ZnO tetrapods for high-performance supercapacitor applications [J].
Luo, Qun ;
Xu, Pingru ;
Qiu, Yongfu ;
Cheng, Zhiyu ;
Chang, Xueyi ;
Fan, Hongbo .
MATERIALS LETTERS, 2017, 198 :192-195
[4]  
Shi S., 2013, J MATER CHEM A, P13779, DOI [10.1039/b000000x, DOI 10.1039/B000000X]
[5]   All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon [J].
Subramani, K. ;
Sudhan, N. ;
Divya, R. ;
Sathish, M. .
RSC ADVANCES, 2017, 7 (11) :6648-6659
[6]   Facile and Scalable Ultra-fine Cobalt Oxide/Reduced Graphene Oxide Nanocomposites for High Energy Asymmetric Supercapacitors [J].
Subramani, K. ;
Kowsik, S. ;
Sathish, M. .
CHEMISTRYSELECT, 2016, 1 (13) :3455-3467
[7]   Facile and scalable route to sheets-on-sheet mesoporous Ni-Co-hydroxide/reduced graphene oxide nanocomposites and their electrochemical and magnetic properties [J].
Subramani, K. ;
Lakshminarasimhan, N. ;
Kamaraj, P. ;
Sathish, M. .
RSC ADVANCES, 2016, 6 (19) :15941-15951
[8]   Orange Peel Derived Activated Carbon for Fabrication of High-Energy and High-Rate Supercapacitors [J].
Subramani, Kaipannan ;
Sudhan, Nagarajan ;
Karnan, Manickavasakam ;
Sathish, Marappan .
CHEMISTRYSELECT, 2017, 2 (35) :11384-11392
[9]   A review of electrode materials for electrochemical supercapacitors [J].
Wang, Guoping ;
Zhang, Lei ;
Zhang, Jiujun .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (02) :797-828
[10]   Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems [J].
Yang, Peihua ;
Xiao, Xu ;
Li, Yuzhi ;
Ding, Yong ;
Qiang, Pengfei ;
Tan, Xinghua ;
Mai, Wenjie ;
Lin, Ziyin ;
Wu, Wenzhuo ;
Li, Tianqi ;
Jin, Huanyu ;
Liu, Pengyi ;
Zhou, Jun ;
Wong, Ching Ping ;
Wang, Zhong Lin .
ACS NANO, 2013, 7 (03) :2617-2626