Anomaly Detection Based on Zero-Shot Outlier Synthesis and Hierarchical Feature Distillation

被引:22
作者
Rivera, Adin Ramirez [1 ]
Khan, Adil [2 ]
Bekkouch, Imad Eddine Ibrahim [2 ]
Sheikh, Taimoor Shakeel [2 ]
机构
[1] Univ Estadual Campinas, Inst Comp, BR-13083970 Campinas, SP, Brazil
[2] Innopolis Univ, Inst Data Sci & Artificial Intelligence, Innopolis 420500, Russia
基金
巴西圣保罗研究基金会;
关键词
Feature extraction; Anomaly detection; Probabilistic logic; Training; Data models; Uncertainty; Task analysis; unsupervised learning; NOVELTY DETECTION; FACE RECOGNITION; CLASSIFICATION; LOCALIZATION; MIXTURES; PATTERN;
D O I
10.1109/TNNLS.2020.3027667
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection suffers from unbalanced data since anomalies are quite rare. Synthetically generated anomalies are a solution to such ill or not fully defined data. However, synthesis requires an expressive representation to guarantee the quality of the generated data. In this article, we propose a two-level hierarchical latent space representation that distills inliers' feature descriptors [through autoencoders (AEs)] into more robust representations based on a variational family of distributions (through a variational AE) for zero-shot anomaly generation. From the learned latent distributions, we select those that lie on the outskirts of the training data as synthetic-outlier generators. Also, we synthesize from them, i.e., generate negative samples without seen them before, to train binary classifiers. We found that the use of the proposed hierarchical structure for feature distillation and fusion creates robust and general representations that allow us to synthesize pseudo outlier samples. Also, in turn, train robust binary classifiers for true outlier detection (without the need for actual outliers during training). We demonstrate the performance of our proposal on several benchmarks for anomaly detection.
引用
收藏
页码:281 / 291
页数:11
相关论文
共 82 条
  • [81] Provable Self-Representation Based Outlier Detection in a Union of Subspaces
    You, Chong
    Robinson, Daniel P.
    Vidal, Rene
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4323 - 4332
  • [82] Zhai SF, 2016, PR MACH LEARN RES, V48