Strongly minimal expansions of (C,+) definable in o-minimal fields

被引:5
作者
Hasson, Assaf [1 ]
Kowalski, Piotr [2 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Univ Wroclaw, Inst Matemat, PL-50384 Wroclaw, Poland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1112/plms/pdm052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize those functions f : C --> C definable in o-minimal expansions of the reals for which the structure (C, +, f) is strongly minimal: such functions must be complex constructible, possibly after conjugating by a real matrix. In particular we prove a special case of the Zilber Dichotomy: an algebraically closed field is definable in certain strongly minimal structures which are definable in an o-minimal field.
引用
收藏
页码:117 / 154
页数:38
相关论文
共 29 条
[21]  
PFTERZIL Y, 2001, SELECTA MATH, V7, P409
[22]  
PILLAY ANAND, 1996, OXFORD LOGIC GUIDES, V32
[23]  
Poizat Bruno, 2001, MATH SURVEYS MONOGRA, V87
[24]  
RABINOVICH ED, 1993, QMW MATHS NOTES, V14
[25]  
VANDENDRIES L, 1998, LONDON MATH SOC LECT, V248, DOI DOI 10.1017/CBO9780511525919
[26]  
Whyburn G. T., 1964, PRINCETON MATH SERIE, V23
[27]  
WOERHEIDF A, 1996, THESIS U ILLINOIS UR
[28]  
ZILBER B, 2005, NONCOMMUTATIVE GEOME
[29]  
ZILBER BI, 1984, P INT C MATH WARS 19, V1, P359