Strongly minimal expansions of (C,+) definable in o-minimal fields

被引:5
作者
Hasson, Assaf [1 ]
Kowalski, Piotr [2 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Univ Wroclaw, Inst Matemat, PL-50384 Wroclaw, Poland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1112/plms/pdm052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize those functions f : C --> C definable in o-minimal expansions of the reals for which the structure (C, +, f) is strongly minimal: such functions must be complex constructible, possibly after conjugating by a real matrix. In particular we prove a special case of the Zilber Dichotomy: an algebraically closed field is definable in certain strongly minimal structures which are definable in an o-minimal field.
引用
收藏
页码:117 / 154
页数:38
相关论文
共 29 条
[1]  
[Anonymous], TOPOLOGICAL GROUPS
[2]   Intersection theory for o-minimal manifolds [J].
Berarducci, A ;
Otero, M .
ANNALS OF PURE AND APPLIED LOGIC, 2001, 107 (1-3) :87-119
[3]   Invariance of the n dimensional field [J].
Brouwer, LEJ .
MATHEMATISCHE ANNALEN, 1912, 72 :55-56
[4]  
BUECHLER S, 1996, ESSENTIAL STABILITY
[5]   Model theory of difference fields, II: Periodic ideals and the trichotomy in all characteristics [J].
Chatzidakis, Z ;
Hrushovski, E ;
Peterzil, Y .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 85 :257-311
[6]  
GANGBO W, 1995, DEGREE THEORY ANAL A
[7]  
Hodges W., 1997, A Shorter Model Theory
[8]   The Mordell-Lang conjecture for function fields [J].
Hrushovski, E .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (03) :667-690
[9]   STRONGLY MINIMAL EXPANSIONS OF ALGEBRAICALLY CLOSED FIELDS [J].
HRUSHOVSKI, E .
ISRAEL JOURNAL OF MATHEMATICS, 1992, 79 (2-3) :129-151
[10]   Zariski geometries [J].
Hrushovski, E ;
Zilber, B .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (01) :1-56