Statistical estimation of a growth-fragmentation model observed on a genealogical tree

被引:41
作者
Doumic, Marie [1 ,2 ]
Hoffmann, Marc [3 ]
Krell, Nathalie [4 ]
Robert, Lydia [5 ,6 ]
机构
[1] INRIA Rocquencourt, Projet BANG, F-781153 Rocquencourt, France
[2] CNRS, Lab JL Lions, UMR 7598, F-75005 Paris, France
[3] Univ Paris 09, CNRS, UMR 7534, F-75775 Paris 16, France
[4] Univ Rennes 1, CNRS, UMR 6625, F-35042 Rennes, France
[5] INRA, UMR Micalis 1319, F-78350 Jouy En Josas, France
[6] AgroParisTech, UMR Micalis, F-78350 Jouy En Josas, France
关键词
cell division equation; growth-fragmentation; Markov chain on a tree; nonparametric estimation; SIZE-STRUCTURED POPULATION; NONPARAMETRIC-ESTIMATION; DIVISION EQUATION; EXPONENTIAL DECAY; MARKOV-CHAINS; CONVERGENCE; RATES;
D O I
10.3150/14-BEJ623
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We raise the issue of estimating the division rate for a growing and dividing population modelled by a piecewise deterministic Markov branching tree. Such models have broad applications, ranging from TCP/IP window size protocol to bacterial growth. Here, the individuals split into two offsprings at a division rate B(x) that depends on their size x, whereas their size grow exponentially in time, at a rate that exhibits variability. The mean empirical measure of the model satisfies a growth-fragmentation type equation, and we bridge the deterministic and probabilistic viewpoints. We then construct a nonparametric estimator of the division rate B(x) based on the observation of the population over different sampling schemes of size n on the genealogical tree. Our estimator nearly achieves the rate n(-s/(2s+1)) in squared-loss error asymptotically, generalizing and improving on the rate n(-s/(2s+3)) obtained in (SIAM J. Numer Anal. 50 (2012) 925-950, Inverse Problems 25 (2009) 1-22) through indirect observation schemes. Our method is consistently tested numerically and implemented on Escherichia coli data, which demonstrates its major interest for practical applications.
引用
收藏
页码:1760 / 1799
页数:40
相关论文
共 38 条
[1]   A mean-field model for multiple TCP connections through a buffer implementing RED [J].
Baccelli, F ;
McDonald, DR ;
Reynier, J .
PERFORMANCE EVALUATION, 2002, 49 (1-4) :77-97
[2]   FINE ASYMPTOTICS OF PROFILES AND RELAXATION TO EQUILIBRIUM FOR GROWTH-FRAGMENTATION EQUATIONS WITH VARIABLE DRIFT RATES [J].
Balague, Daniel ;
Canizo, Jose A. ;
Gabriel, Pierre .
KINETIC AND RELATED MODELS, 2013, 6 (02) :219-243
[3]   Estimation of Cell Proliferation Dynamics Using CFSE Data [J].
Banks, H. T. ;
Sutton, Karyn L. ;
Thompson, W. Clayton ;
Bocharov, Gennady ;
Roose, Dirk ;
Schenkel, Tim ;
Meyerhans, Andreas .
BULLETIN OF MATHEMATICAL BIOLOGY, 2011, 73 (01) :116-150
[4]   Proliferating parasites in dividing cells: Kimmel's branching model revisited [J].
Bansaye, Vincent .
ANNALS OF APPLIED PROBABILITY, 2008, 18 (03) :967-996
[5]   LIMIT THEOREMS FOR MARKOV PROCESSES INDEXED BY CONTINUOUS TIME GALTON-WATSON TREES [J].
Bansaye, Vincent ;
Delmas, Jean-Francois ;
Marsalle, Laurence ;
Tran, Viet Chi .
ANNALS OF APPLIED PROBABILITY, 2011, 21 (06) :2263-2314
[6]   Renewal theory and computable convergence rates for geometrically ergodic Markov chains [J].
Baxendale, PH .
ANNALS OF APPLIED PROBABILITY, 2005, 15 (1B) :700-738
[7]  
Bertoin J., 2006, Random fragmentation and coagulation processes, V102
[8]   Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations [J].
Caceres, Maria J. ;
Canizo, Jose A. ;
Mischler, Stephane .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 96 (04) :334-362
[9]   GROWING CONDITIONED TREES [J].
CHAUVIN, B ;
ROUAULT, A ;
WAKOLBINGER, A .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1991, 39 (01) :117-130
[10]  
Cloez B., 2011, ARXIV11060660V2