An All Speed Second Order IMEX Relaxation Scheme for the Euler Equations

被引:13
|
作者
Thomann, Andrea [1 ,2 ]
Zenk, Markus [3 ]
Puppo, Gabriella [4 ]
Klingenberg, Christian [3 ]
机构
[1] Univ Insubria, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, Italy
[2] Ist Nazl Alta Matemat Francesco Severi, Rome, Italy
[3] Univ Wurzburg, Fak Math & Informat, Emil Fischer Str 40, D-97074 Wurzburg, Germany
[4] Univ Roma La Sapienza, Dipartimento Matemat, Piazzale Aldo Moro 5, I-00185 Rome, Italy
关键词
Finite volume methods; Euler equations; positivity preserving; asymptotic preserving; relaxation; low Mach scheme; IMEX schemes; HYPERBOLIC CONSERVATION-LAWS; APPROXIMATE RIEMANN SOLVERS; MACH; SYSTEMS; STABILITY;
D O I
10.4208/cicp.OA-2019-0123
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an implicit-explicit finite volume scheme for the Euler equations. We start from the non-dimensionalised Euler equations where we split the pressure in a slow and a fast acoustic part. We use a Suliciu type relaxation model which we split in an explicit part, solved using a Godunov-type scheme based on an approximate Riemann solver, and an implicit part where we solve an elliptic equation for the fast pressure. The relaxation source terms are treated projecting the solution on the equilibrium manifold. The proposed scheme is positivity preserving with respect to the density and internal energy and asymptotic preserving towards the incompressible Euler equations. For this first order scheme we give a second order extension which maintains the positivity property. We perform numerical experiments in 1D and 2D to show the applicability of the proposed splitting and give convergence results for the second order extension.
引用
收藏
页码:591 / 620
页数:30
相关论文
共 50 条
  • [1] An all speed second order well-balanced IMEX relaxation scheme for the Euler equations with gravity
    Thomann, Andrea
    Puppo, Gabriella
    Klingenberg, Christian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 420
  • [2] SECOND ORDER ALL SPEED METHOD FOR THE ISENTROPIC EULER EQUATIONS
    Tang, Min
    KINETIC AND RELATED MODELS, 2012, 5 (01) : 155 - 184
  • [3] A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations
    Boscheri, Walter
    Dimarco, Giacomo
    Loubere, Raphael
    Tavelli, Maurizio
    Vignal, Marie-Helene
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 415
  • [4] A new all-speed flux scheme for the Euler equations
    Qu, Feng
    Chen, Jiaojiao
    Sun, Di
    Bai, Junqiang
    Yan, Chao
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (04) : 1216 - 1231
  • [5] Second-order entropy diminishing scheme for the Euler equations
    Coquel, F
    Helluy, P
    Schneider, J
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2006, 50 (09) : 1029 - 1061
  • [6] All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics
    S. Boscarino
    G. Russo
    L. Scandurra
    Journal of Scientific Computing, 2018, 77 : 850 - 884
  • [7] All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics
    Boscarino, S.
    Russo, G.
    Scandurra, L.
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (02) : 850 - 884
  • [8] An all Froude high order IMEX scheme for the shallow water equations on unstructured Voronoi meshes
    Boscheri, Walter
    Tavelli, Maurizio
    Castro, Cristobal E.
    APPLIED NUMERICAL MATHEMATICS, 2023, 185 : 311 - 335
  • [9] A high order semi-implicit IMEX WENO scheme for the all-Mach isentropic Euler system
    Boscarino, Sebastiano
    Qiu, Jing-Mei
    Russo, Giovanni
    Xiong, Tao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 392 : 594 - 618
  • [10] All Speed Scheme for the Low Mach Number Limit of the Isentropic Euler Equations
    Degond, Pierre
    Tang, Min
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 10 (01) : 1 - 31