A 25 kW high temperature electrolysis facility for flexible hydrogen production and system integration studies

被引:33
|
作者
O'Brien, J. E. [1 ]
Hartvigsen, J. L. [1 ]
Boardman, R. D. [1 ]
Hartvigsen, J. J. [2 ]
Larsen, D. [2 ]
Elangovan, S. [2 ]
机构
[1] Idaho Natl Lab, Idaho Falls, ID 83401 USA
[2] OxEon Energy LLC, North Salt Lake, UT USA
关键词
Regenerative fuel cells - Electrolytic cells - Electrolysis - Hydrogen production - Skids - Solid oxide fuel cells (SOFC);
D O I
10.1016/j.ijhydene.2020.04.074
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A 25 kW high-temperature electrolysis (HTE) flexible test facility has been developed at Idaho National Laboratory (INL) for performance evaluation of solid-oxide electrolysis cell (SOEC) stacks operating independently or in thermal integration with co-located systems. This facility is aimed at advancing the state of the art of HTE technology while demonstrating dynamic grid and thermal energy integration and operational characteristics. The 25 kW HTE flexible test station will provide a test bed for state-of-the-art HTE stack technologies from multiple industry partners. The test station will ultimately be integrated with a co-located thermal energy distribution and storage system within the INL Systems Integration Laboratory. The HTE test station will also be designed to communicate with co-located digital real-time simulators for dynamic performance evaluation and hardware-in-the-loop simulations in a dynamic microgrid environment. Operation of the 25 kW HTE system will be followed by deployment of a test skid with infrastructure support for up to 250 kW HTE turnkey systems. A detailed description of the 25 kW HTE system is provided along with results obtained from initial stack testing at the 5 kW scale. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:15796 / 15804
页数:9
相关论文
共 50 条
  • [1] Optimization of High-Temperature Electrolysis System for Hydrogen Production Considering High-Temperature Degradation
    Yuan, Jiming
    Li, Zeming
    Yuan, Benfeng
    Xiao, Guoping
    Li, Tao
    Wang, Jian-Qiang
    ENERGIES, 2023, 16 (06)
  • [2] Nuclear hydrogen production by high-temperature electrolysis
    Kasai, Shigeo
    Fujiwara, Seiji
    Yamada, Kazuya
    Ogawa, Takashi
    Matsunaga, Kentaro
    Yoshino, Masato
    Hoashp, Eiji
    Makino, Shinichi
    Transactions of the Atomic Energy Society of Japan, 2009, 8 (02) : 122 - 141
  • [3] Hydrogen production by high temperature electrolysis with nuclear reactor
    Fujiwara, Seiji
    Kasai, Shigeo
    Yamauchi, Hiroyuki
    Yamada, Kazuya
    Makino, Shinichi
    Matsunaga, Kentaro
    Yoshino, Masato
    Kameda, Tsuneji
    Ogawa, Takashi
    Momma, Shigeki
    Hoashi, Eiji
    PROGRESS IN NUCLEAR ENERGY, 2008, 50 (2-6) : 422 - 426
  • [4] Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production
    Liu Mingyi
    Yu Bo
    Xu Jingming
    Chen Jing
    JOURNAL OF POWER SOURCES, 2008, 177 (02) : 493 - 499
  • [5] A detailed techno-economic analysis of heat integration in high temperature electrolysis for efficient hydrogen production
    Buttler, Alexander
    Koltun, Roman
    Wolf, Romano
    Spliethoff, Hartmut
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (01) : 38 - 50
  • [6] A perspective on hydrogen production via high temperature steam electrolysis
    Xinbing Chen
    Chengzhi Guan
    Guoping Xiao
    Cheng Peng
    Jian-Qiang Wang
    Science China(Chemistry), 2017, (11) : 1379 - 1381
  • [7] Heat management for hydrogen production by high temperature steam electrolysis
    Mansilla, C
    Sigurvinsson, J
    Bontemps, A
    Maréchal, A
    Werkoff, F
    Proceedings of ECOS 2005, Vols 1-3: SHAPING OUR FUTURE ENERGY SYSTEMS, 2005, : 1159 - 1166
  • [8] High-temperature steam electrolysis for renewable hydrogen production
    Marina, Olga
    Holladay, Jamie
    Stevenson, Jeff
    Meinhardt, Kerry
    Whyatt, Greg
    Coyle, Chris
    Edwards, Dan
    Recknagle, Kurt
    Bao, Jie
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [9] Economic and environmental competitiveness of high temperature electrolysis for hydrogen production
    Motazedi, Kavan
    Salkuyeh, Yaser Khojasteh
    Laurenzi, Ian J.
    MacLean, Heather L.
    Bergerson, Joule A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (41) : 21274 - 21288
  • [10] High Temperature Solid Oxide Electrolysis for Green Hydrogen Production
    Liu, Hua
    Yu, Miao
    Tong, Xiaofeng
    Wang, Qingjie
    Chen, Ming
    CHEMICAL REVIEWS, 2024, 124 (18) : 10509 - 10576