Fourier harmonic approach for visualizing temporal patterns of gene expression data

被引:6
|
作者
Zhang, L [1 ]
Zhang, AD [1 ]
Ramanathan, M [1 ]
机构
[1] SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA
来源
PROCEEDINGS OF THE 2003 IEEE BIOINFORMATICS CONFERENCE | 2003年
关键词
visualization; gene expression; time series; Fourier harmonic projection;
D O I
10.1109/CSB.2003.1227313
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
DNA microarray technology provides a broad snapshot of the state of the cell by measuring the expression levels of thousands of genes simultaneously. Visualization techniques can enable the exploration and detection of patterns and relationships in a complex dataset by presenting the data in a graphical format in which the key characteristics become more apparent. The purpose of this study is to present an interactive visualization technique conveying the temporal patterns of gene expression data in a form intuitive for non-specialized end-users. The first Fourier harmonic projection (FFHP) was introduced to translate the multi-dimensional time series data into a two dimensional scatterplot. The spatial relationship of the points reflect the structure of the original dataset and relationships among clusters become two dimensional. The proposed method was tested using two published, array-derived gene expression datasets. Our results demonstrate the effectiveness of the approach.
引用
收藏
页码:137 / 147
页数:11
相关论文
共 50 条
  • [21] Show and tell: visualizing gene expression in living cells
    Rafalska-Metcalf, Ilona U.
    Janicki, Susan M.
    JOURNAL OF CELL SCIENCE, 2007, 120 (14) : 2301 - 2307
  • [22] GENE EXPRESSION DATA CLASSIFICATION AND PATTERN ANALYSIS USING DATA DRIVEN APPROACH
    Ramisa, Aiman Jabeen
    Hossain, Ananna
    Islam, S. K. Md Injamul
    Swadesh, Ponuel Mollah
    Islam, Md Toushif
    Rahman, Md Anisur
    Parvez, Mohammad Zavid
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2021, : 82 - 90
  • [23] Temporal gene expression patterns in G93A/SOD1 mouse
    Chen, LC
    Smith, AP
    Ben, Y
    Zukic, B
    Ignacio, S
    Moore, D
    Lee, NM
    AMYOTROPHIC LATERAL SCLEROSIS, 2004, 5 (03): : 164 - 171
  • [24] A Hierarchical Approach for Clustering and Pattern Matching of Gene Expression Data
    Hoque, Soriful
    Istyaq, Salim
    Riaz, Md Mushir
    2012 SIXTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING (ICGEC), 2012, : 413 - 416
  • [25] Modelling and Analysis of Temporal Gene Expression Data Using Spiking Neural Networks
    Nandini, Durgesh
    Capecci, Elisa
    Koefoed, Lucien
    Lana, Ibai
    Shahi, Gautam Kishore
    Kasabov, Nikola
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT I, 2018, 11301 : 571 - 581
  • [26] Dynamic clustering of gene expression data using a fuzzy approach
    Sirbu, Adela-Maria
    Czibula, Gabriela
    Bocicor, Maria-Iuliana
    16TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2014), 2014, : 220 - 227
  • [27] A Topological Data Analysis Approach on Predicting Phenotypes from Gene Expression Data
    Mandal, Sayan
    Guzman-Saenz, Aldo
    Haiminen, Niina
    Basu, Saugata
    Parida, Laxmi
    ALGORITHMS FOR COMPUTATIONAL BIOLOGY (ALCOB 2020), 2020, 12099 : 178 - 187
  • [28] A functional approach to transcriptome profiling: Linking gene expression patterns to metabolites that matter
    Hoover, Cindi A.
    Slattery, Marc
    Marsh, Adam G.
    MARINE BIOTECHNOLOGY, 2007, 9 (04) : 411 - 419
  • [29] Temporal patterns of A-myb and B-myb gene expression during testis development
    Latham, KE
    Litvin, J
    Orth, JM
    Patel, B
    Mettus, R
    Reddy, EP
    ONCOGENE, 1996, 13 (06) : 1161 - 1168
  • [30] The "Gene Cube": A Novel Approach to Three-dimensional Clustering of Gene Expression Data
    Lambrou, George I.
    Sdraka, Maria
    Koutsouris, Dimitrios
    CURRENT BIOINFORMATICS, 2019, 14 (08) : 721 - 727