Fourier harmonic approach for visualizing temporal patterns of gene expression data

被引:6
|
作者
Zhang, L [1 ]
Zhang, AD [1 ]
Ramanathan, M [1 ]
机构
[1] SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA
来源
PROCEEDINGS OF THE 2003 IEEE BIOINFORMATICS CONFERENCE | 2003年
关键词
visualization; gene expression; time series; Fourier harmonic projection;
D O I
10.1109/CSB.2003.1227313
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
DNA microarray technology provides a broad snapshot of the state of the cell by measuring the expression levels of thousands of genes simultaneously. Visualization techniques can enable the exploration and detection of patterns and relationships in a complex dataset by presenting the data in a graphical format in which the key characteristics become more apparent. The purpose of this study is to present an interactive visualization technique conveying the temporal patterns of gene expression data in a form intuitive for non-specialized end-users. The first Fourier harmonic projection (FFHP) was introduced to translate the multi-dimensional time series data into a two dimensional scatterplot. The spatial relationship of the points reflect the structure of the original dataset and relationships among clusters become two dimensional. The proposed method was tested using two published, array-derived gene expression datasets. Our results demonstrate the effectiveness of the approach.
引用
收藏
页码:137 / 147
页数:11
相关论文
共 50 条
  • [1] Using mutual information to discover temporal patterns in gene expression data
    Chumakov, Sergei
    Ballesteros, Efren
    Sanchez, Jorge E. Rodriguez
    Chavez, Arturo
    Zhang, Meizhuo
    Pettit, B. Montgomery
    Fofanov, Yuriy
    MEDICAL PHYSICS, 2006, 854 : 25 - +
  • [2] Bayesian forecasting of temporal gene expression by using an autoregressive panel data approach
    Nascimento, M.
    Silva, F. F. E.
    Safadi, T.
    Nascimento, A. C. C.
    Barroso, L. M. A.
    Gloria, L. S.
    Carvalho, B. de S.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (02)
  • [3] Applications of Parallel Coordinate Plots for Visualizing Gene Expression Data
    Park, Mira
    Kwak, Il-Youp
    Huh, Myung-Hoe
    KOREAN JOURNAL OF APPLIED STATISTICS, 2008, 21 (06) : 911 - 921
  • [4] MulteeSum: A Tool for Comparative Spatial and Temporal Gene Expression Data
    Meyer, Miriah
    Munzner, Tamara
    DePace, Angela
    Pfister, Hanspeter
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2010, 16 (06) : 908 - 917
  • [5] An evolutionary approach for gene expression patterns
    Tsai, HK
    Yang, JM
    Tsai, YF
    Kao, CY
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2004, 8 (02): : 69 - 78
  • [6] Minimum redundancy maximum relevance feature selection approach for temporal gene expression data
    Milos Radovic
    Mohamed Ghalwash
    Nenad Filipovic
    Zoran Obradovic
    BMC Bioinformatics, 18
  • [7] Minimum redundancy maximum relevance feature selection approach for temporal gene expression data
    Radovic, Milos
    Ghalwash, Mohamed
    Filipovic, Nenad
    Obradovic, Zoran
    BMC BIOINFORMATICS, 2017, 18
  • [8] Data streaming architecture for visualizing cryptocurrency temporal data
    Bandi A.
    Lecture Notes on Data Engineering and Communications Technologies, 2021, 66 : 651 - 661
  • [9] Precedence Temporal Networks to represent temporal relationships in gene expression data
    Sacchi, Lucia
    Larizza, Cristiana
    Magni, Paolo
    Bellazzi, Riccardo
    JOURNAL OF BIOMEDICAL INFORMATICS, 2007, 40 (06) : 761 - 774
  • [10] Application of cluster analysis of temporal gene expression data to panel data
    Nascimento, Moyses
    Safadi, Thelma
    Fonseca e Silva, Fabyano
    PESQUISA AGROPECUARIA BRASILEIRA, 2011, 46 (11) : 1489 - 1495