Electron energy probability function in the temporal afterglow of a dusty plasma

被引:10
作者
Denysenko, I. B. [1 ]
Azarenkov, N. A. [1 ]
Ostrikov, K. [2 ,3 ,4 ,5 ]
Yu, M. Y. [6 ,7 ]
机构
[1] Kharkov Natl Univ, Sch Phys & Technol, Svobody Sq 4, UA-61022 Kharkov, Ukraine
[2] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Inst Future Environm, Brisbane, Qld 4000, Australia
[3] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Inst Hlth & Biomed Innovat, Brisbane, Qld 4000, Australia
[4] CSIRO Mfg, POB 218,Bradfield Rd, Lindfield, NSW 2070, Australia
[5] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[6] Shenzhen Technol Univ, Ctr Adv Mat Diagnost Technol, Shenzhen 518118, Peoples R China
[7] Zhejiang Univ, Inst Fus Theory & Simulat, Hangzhou 310027, Zhejiang, Peoples R China
关键词
BOLTZMANN-EQUATION; KINETIC-MODEL; DISCHARGE; DYNAMICS; BEHAVIOR; DENSITY;
D O I
10.1063/1.5010742
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The kinetic description of the electron energy probability function (EEPF) in a dusty afterglow plasma is considered for two typical cases: when the rate of electron-neutral momentum-transfer collisions is independent of the electron energy and when it is a power function of the electron energy. The electron Boltzmann equation is solved using the method of characteristics and analytical expressions for the EEPF are obtained for different initial EEPFs (including both Maxwellian and Druyvesteyn distributions) at electron energies larger than the dust-surface potential. The analytical EEPF functions are then used to analyze several experimental parameter regimes of the dust radius and density, the dust-charge decay time, the afterglow duration, etc. It is also found that absorption of electrons by the dust particles plays an important role in determining the EEPF in a dusty afterglow. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 67 条
  • [1] Kinetic simulations of argon dusty plasma afterglow including metastable atom kinetics
    Alexandrov, A. L.
    Schweigert, I. V.
    Ariskin, D. A.
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2013, 116 (04) : 663 - 672
  • [2] Dust Coulomb balls: Three-dimensional plasma crystals
    Arp, O
    Block, D
    Piel, A
    Melzer, A
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (16) : 165004 - 1
  • [3] A model of a large-area planar plasma producer based on surface wave propagation in a plasma-metal structure with a dielectric sheath
    Azarenkov, NA
    Denisenko, IB
    Ostrikov, KN
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1995, 28 (12) : 2465 - 2469
  • [4] Anomalous behaviour of the electron density in a pulsed complex plasma
    Berndt, J
    Kovacevic, E
    Selenin, V
    Stefanovic, I
    Winter, J
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2006, 15 (01) : 18 - 22
  • [5] Controlled dust formation in pulsed rf plasmas
    Berndt, J.
    Kovacevic, E.
    Stefanovic, I.
    Boufendi, L.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 106 (06)
  • [6] Biberman L., 1987, KINETICS NONEQUILIBR
  • [7] CHARACTERISTICS OF A DUSTY NONTHERMAL PLASMA FROM A PARTICLE-IN-CELL MONTE-CARLO SIMULATION
    BOEUF, JP
    [J]. PHYSICAL REVIEW A, 1992, 46 (12): : 7910 - 7922
  • [8] PARTICLE GENERATION AND BEHAVIOR IN A SILANE-ARGON LOW-PRESSURE DISCHARGE UNDER CONTINUOUS OR PULSED RADIOFREQUENCY EXCITATION
    BOUCHOULE, A
    PLAIN, A
    BOUFENDI, L
    BLONDEAU, JP
    LAURE, C
    [J]. JOURNAL OF APPLIED PHYSICS, 1991, 70 (04) : 1991 - 2000
  • [9] Bouchoule Andre, 1999, Dusty plasmas: physics, chemistry, and technological impacts in plasma processing
  • [10] Surface States and the Charge of a Dust Particle in a Plasma
    Bronold, F. X.
    Fehske, H.
    Kersten, H.
    Deutsch, H.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (17)