A MRI-based radiomics nomogram for evaluation of renal function in ADPKD

被引:10
作者
Li, Xiaojiao [1 ]
Liu, Qingwei [1 ]
Xu, Jingxu [2 ]
Huang, Chencui [2 ]
Hua, Qianqian [1 ]
Wang, Haili [1 ]
Ma, Teng [1 ]
Huang, Zhaoqin [1 ]
机构
[1] Shandong Univ, Shandong Prov Hosp, Cheeloo Coll Med, Dept Radiol, 324 Jingwuweiqi Rd, Jinan 250021, Shandong, Peoples R China
[2] PHD Technol Co Ltd, Dept Res Collaborat, R&D Ctr, Beijing Deepwise & League, Beijing, Peoples R China
关键词
Autosomal dominant polycystic key disease; radiomics nomogram; Evaluation of renal function; MRI; POLYCYSTIC KIDNEY-DISEASE; VOLUME PROGRESSION; FUNCTION DECLINE; IMAGES;
D O I
10.1007/s00261-022-03433-4
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives This study is aimed to establish a fusion model of radiomics-based nomogram to predict the renal function of autosomal dominant polycystic kidney disease (ADPKD). Methods One hundred patients with ADPKD were randomly divided into training group (n = 69) and test group (n = 31). The radiomics features were extracted from T1-weighted fat suppression images (FS-T1WI) and T2-weighted fat suppression images (FS-T2WI). Decision tree algorithm was employed to build radiomics model to get radiomics signature. Then multivariate logistic regression analysis was used to establish the radiomics nomogram based on independent clinical factors, conventional MR imaging variables and radiomics signature. The receiver operating characteristic (ROC) analysis and Delong test were used to compare the performance of radiomics model and radiomics nomogram model, and the decision curve to evaluate the clinical application value of radiomics nomogram model in the evaluation of renal function in patients with ADPKD. Results Fourteen radiomics features were selected to establish radiomics model. Based on FS-T1WI and FS-T2WI sequences, the radiomics model showed good discrimination ability in training group and test group [training group: (AUC) = 0.7542, test group (AUC) = 0.7417]. The performance of radiomics nomogram model was significantly better than that of radiomics model in all data sets [radiomics model (AUC)= 0.7505, radiomics nomogram model (AUC) = 0.8435, p value = 0.005]. The analysis of calibration curve and decision curve showed that radiomics nomogram model had more clinical application value. Conclusion radiomics analysis of MRI can be used for the preliminary evaluation and prediction of renal function in patients with ADPKD. The radiomics nomogram model shows better prediction effect in renal function evaluation, and can be used as a non-invasive renal function prediction tool to assist clinical decision-making. [GRAPHICS] .
引用
收藏
页码:1385 / 1395
页数:11
相关论文
共 32 条
[21]   Assessment of tumor heterogeneity by CT texture analysis: Can the largest cross-sectional area be used as an alternative to whole tumor analysis? [J].
Ng, Francesca ;
Kozarski, Robert ;
Ganeshan, Balaji ;
Goh, Vicky .
EUROPEAN JOURNAL OF RADIOLOGY, 2013, 82 (02) :342-348
[22]   Clinical characteristics and predictors of progression of chronic kidney disease in autosomal dominant polycystic kidney disease: a single center experience [J].
Ozkok, Abdullah ;
Akpinar, Timur Selcuk ;
Tufan, Fatih ;
Kanitez, Nilufer Alpay ;
Uysal, Mukremin ;
Guzel, Metban ;
Caliskan, Yasar ;
Alisir, Sabahat ;
Yazici, Halil ;
Ecder, Tevfik .
CLINICAL AND EXPERIMENTAL NEPHROLOGY, 2013, 17 (03) :345-351
[23]   Total Kidney Volume Is a Prognostic Biomarker of Renal Function Decline and Progression to End-Stage Renal Disease in Patients With Autosomal Dominant Polycystic Kidney Disease [J].
Perrone, Ronald D. ;
Mouksassi, Mohamad-Samer ;
Romero, Klaus ;
Czerwiec, Frank S. ;
Chapman, Arlene B. ;
Gitomer, Berenice Y. ;
Torres, Vicente E. ;
Miskulin, Dana C. ;
Broadbent, Steve ;
Marier, Jean F. .
KIDNEY INTERNATIONAL REPORTS, 2017, 2 (03) :442-450
[24]   Differentiation of low and high grade renal cell carcinoma on routine MRI with an externally validated automatic machine learning algorithm [J].
Purkayastha, Subhanik ;
Zhao, Yijun ;
Wu, Jing ;
Hu, Rong ;
McGirr, Aidan ;
Singh, Sukhdeep ;
Chang, Ken ;
Huang, Raymond Y. ;
Zhang, Paul J. ;
Silva, Alvin ;
Soulen, Michael C. ;
Stavropoulos, S. William ;
Zhang, Zishu ;
Bai, Harrison X. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[25]   Hemorrhagic Cysts and OtherMRBiomarkers for Predicting Renal Dysfunction Progression in Autosomal Dominant Polycystic Kidney Disease [J].
Riyahi, Sadjad ;
Dev, Hreedi ;
Blumenfeld, Jon D. ;
Rennert, Hanna ;
Yin, Xiaorui ;
Attari, Hanieh ;
Barash, Irina ;
Chicos, Ines ;
Bobb, Warren ;
Donahue, Stephanie ;
Prince, Martin R. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 53 (02) :564-576
[26]   Estimation of Total Kidney Volume in Autosomal Dominant Polycystic Kidney Disease [J].
Spithoven, Edwin M. ;
van Gastel, Maatje D. A. ;
Messchendorp, A. Lianne ;
Casteleijn, Niek F. ;
Drenth, Joost P. H. ;
Gaillard, Carlo A. ;
de Fijter, Johan W. ;
Meijer, Esther ;
Peters, Dorien J. M. ;
Kappert, Peter ;
Renken, Remco J. ;
Visser, Folkert W. ;
Wetzels, Jack F. M. ;
Zietse, Robert ;
Gansevoort, Ron T. .
AMERICAN JOURNAL OF KIDNEY DISEASES, 2015, 66 (05) :792-801
[27]   Polycystic kidney disease: Pathogenesis and potential therapies [J].
Takiar, Vinita ;
Caplan, Michael J. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2011, 1812 (10) :1337-1343
[28]   Management of Pain in Autosomal Dominant Polycystic Kidney Disease and Anatomy of Renal Innervation [J].
Tellman, Matthew W. ;
Bahler, Clinton D. ;
Shumate, Ashley M. ;
Bacallao, Robert L. ;
Sundaram, Chandru P. .
JOURNAL OF UROLOGY, 2015, 193 (05) :1470-1478
[29]   Magnetic resonance measurements of renal blood flow and disease progression in autosomal dominant polycystic kidney disease [J].
Torres, Vicente E. ;
King, Bernard F. ;
Chapman, Arlene B. ;
Brummer, Marijn E. ;
Bae, Kyongtae T. ;
Glockner, James F. ;
Arya, Kraisthith ;
Risk, Dana ;
Felmlee, Joel P. ;
Grantham, Jared J. ;
Guay-Woodford, Lisa M. ;
Bennett, William M. ;
Klahr, Saulo ;
Meyers, Catherine M. ;
Zhang, Xiaoling ;
Thompson, Paul A. ;
Miller, J. Philip .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2007, 2 (01) :112-120
[30]   Interactions between Macrophages and Cyst-Lining Epithelial Cells Promote Kidney Cyst Growth in Pkd1-Deficient Mice [J].
Yang, Yang ;
Chen, Meihan ;
Zhou, Jie ;
Lv, Jiayi ;
Song, Shuwei ;
Fu, LiLi ;
Chen, Jiejian ;
Yang, Ming ;
Mei, Changlin .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2018, 29 (09) :2310-2325