REMARKS ON PATTERN FORMATION IN A MODEL FOR HAIR FOLLICLE SPACING

被引:1
作者
Rashkov, Peter [1 ]
机构
[1] Univ Marburg, Dept Math & Informat, D-35032 Marburg, Germany
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2015年 / 20卷 / 05期
关键词
Biological modelling; pattern formation; dynamical systems; Turing instability; far-from-equilibrium solutions; GLOBAL EXISTENCE; ACTIVATOR; EQUATIONS; SYSTEMS; GIERER;
D O I
10.3934/dcdsb.2015.20.1555
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A modified version of the Gierer-Meinhardt reaction-diffusion system (without source terms) is used in a model for hair follicle spacing in mice, proposed by Sick, Reinker, Timmer and Schlake [22]. Global existence of solutions of this model system is shown by computing uniform bounds. Analysis of conditions for emergence of spatially heterogeneous solutions is performed using a limiting form of the original reaction-diffusion system. The conditions for pattern formation given in [22] are improved by including those subregions in the parameter space where far-from-equilibrium heterogeneous solutions occur.
引用
收藏
页码:1555 / 1572
页数:18
相关论文
共 27 条
  • [1] Erectogenic Effects of Clerodendron capitatum: Involvement of Phosphodiesterase Type-5 Inhibition
    Abdelwahab, Siddig Ibrahim
    Mohamed, Abdelwahab Hassan
    Mohamed, Osama Yousif
    Oall, Mahjoub
    Taha, Manal Mohamed Elhassan
    Mohan, Syam
    Noordin, Mohamed Ibrahim
    Mustafa, Mohd Rais
    Alkharfy, Khalid M.
    [J]. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2012, 2012 : 1 - 6
  • [2] [Anonymous], 1993, MATH BIOL, DOI DOI 10.1007/978-3-662-08542-4
  • [3] Partial differential equations for self-organization in cellular and developmental biology
    Baker, R. E.
    Gaffney, E. A.
    Maini, P. K.
    [J]. NONLINEARITY, 2008, 21 (11) : R251 - R290
  • [4] Bifurcation analysis of the Gierer-Meinhardt system with a saturation in the activator production
    Chen, Shanshan
    Shi, Junping
    Wei, Junjie
    [J]. APPLICABLE ANALYSIS, 2014, 93 (06) : 1115 - 1134
  • [5] Crandall M.G., 1971, J. Funct. Anal., V8, P321
  • [6] A-PRIORI ESTIMATES AND APPLICATIONS TO EXISTENCE-NONEXISTENCE FOR A SEMILINEAR ELLIPTIC SYSTEM
    DELPINO, MA
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1994, 43 (01) : 77 - 129
  • [7] Evans L. C., 2010, P R T L FF R N T L Q, VSecond
  • [8] THEORY OF BIOLOGICAL PATTERN FORMATION
    GIERER, A
    MEINHARDT, H
    [J]. KYBERNETIK, 1972, 12 (01): : 30 - 39
  • [9] Geometrical Structure of Laplacian Eigenfunctions
    Grebenkov, D. S.
    Nguyen, B. -T.
    [J]. SIAM REVIEW, 2013, 55 (04) : 601 - 667
  • [10] New development in freefem++
    Hecht, F.
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2012, 20 (3-4) : 251 - 265