Weakly Supervised Learning Based on Coupled Convolutional Neural Networks for Aircraft Detection

被引:218
|
作者
Zhang, Fan [1 ]
Du, Bo [2 ]
Zhang, Liangpei [1 ]
Xu, Miaozhong [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2016年 / 54卷 / 09期
基金
中国国家自然科学基金;
关键词
Aircraft detection; convolutional neural networks (CNNs); weakly supervised learning; OBJECT DETECTION; ROTATION-INVARIANT; IMAGE; SALIENCY; MODEL;
D O I
10.1109/TGRS.2016.2569141
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Aircraft detection from very high resolution (VHR) remote sensing images has been drawing increasing interest in recent years due to the successful civil and military applications. However, several challenges still exist: 1) extracting the high-level features and the hierarchical feature representations of the objects is difficult; 2) manual annotation of the objects in large image sets is generally expensive and sometimes unreliable; and 3) locating objects within such a large image is difficult and time consuming. In this paper, we propose a weakly supervised learning framework based on coupled convolutional neural networks (CNNs) for aircraft detection, which can simultaneously solve these problems. We first develop a CNN-based method to extract the high-level features and the hierarchical feature representations of the objects. We then employ an iterative weakly supervised learning framework to automatically mine and augment the training data set from the original image. We propose a coupled CNN method, which combines a candidate region proposal network and a localization network to extract the proposals and simultaneously locate the aircraft, which is more efficient and accurate, even in large-scale VHR images. In the experiments, the proposed method was applied to three challenging high-resolution data sets: the Sydney International Airport data set, the Tokyo Haneda Airport data set, and the Berlin Tegel Airport data set. The extensive experimental results confirm that the proposed method can achieve a higher detection accuracy than the other methods.
引用
收藏
页码:5553 / 5563
页数:11
相关论文
共 50 条
  • [21] Cascade Convolutional Neural Network Based on Transfer-Learning for Aircraft Detection on High-Resolution Remote Sensing Images
    Pan, Bin
    Tai, Jianhao
    Zheng, Qi
    Zhao, Shanshan
    JOURNAL OF SENSORS, 2017, 2017
  • [22] Deep Convolutional Neural Network with Structured Prediction for Weakly Supervised Audio Event Detection
    Choi, Inkyu
    Bae, Soo Hyun
    Kim, Nam Soo
    APPLIED SCIENCES-BASEL, 2019, 9 (11):
  • [23] Co-saliency Detection via Extremely Weakly Supervised Convolutional Neural Network
    Kompella, Aditya
    Kulkarni, Raghavendra V.
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 447 - 454
  • [24] An Image Classification Method Based on Semi-Supervised Classification Learning and Convolutional Neural Networks
    Shi, Liyan
    Chen, Hairui
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 33 (03)
  • [25] Eye landmarks detection via weakly supervised learning
    Huang, Bin
    Chen, Renwen
    Zhou, Qinbang
    Xu, Wang
    PATTERN RECOGNITION, 2020, 98
  • [26] Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection
    Atha, Deegan J.
    Jahanshahi, Mohammad R.
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2018, 17 (05): : 1110 - 1128
  • [27] HYPERGRAPH CONVOLUTIONAL NETWORKS FOR WEAKLY-SUPERVISED SEMANTIC SEGMENTATION
    Giraldo, Jhony H.
    Scarrica, Vincenzo
    Staiano, Antonino
    Camastra, Francesco
    Bouwmans, Thierry
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 16 - 20
  • [28] Aircraft detection in remote sensing images using cascade convolutional neural networks
    Yu D.
    Guo H.
    Zhang B.
    Zhao C.
    Lu J.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (08): : 1046 - 1058
  • [29] Self Paced Deep Learning for Weakly Supervised Object Detection
    Sangineto, Enver
    Nabi, Moin
    Culibrk, Dubravko
    Sebe, Nicu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (03) : 712 - 725
  • [30] An Improved Adaptive Angle Weakly Supervised Learning Object Detection
    Chen, Yantong
    Shi, Yuxin
    Ren, Jianzhao
    Li, Jiabao
    2024 IEEE 24TH INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY, QRS, 2024, : 494 - 503