An integrated algorithm for gene selection and classification applied to microarray data of ovarian cancer

被引:37
作者
Lee, Zne-Jung [1 ]
机构
[1] Huafan Univ, Dept Informat Management, Shihding Township 22301, Taipei County, Taiwan
关键词
ovarian cancer; microarray data; gene selection; support vector machine; genetic algorithm; particle swarm optimization;
D O I
10.1016/j.artmed.2007.09.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Objective: The type of data in microarray provides unprecedented amount of data. A typical microarray data of ovarian cancer consists of the expressions of tens of thousands of genes on a genomic scale, and there is no systematic procedure to analyze this information instantaneously. To avoid higher computational complexity, it needs to select the most Likely differentially expressed gene markers to explain the effects of ovarian cancer. Traditionally, gene markers are selected by ranking genes according to statistics or machine learning algorithms. In this paper, an integrated algorithm is derived for gene selection and classification in microarray data of ovarian cancer. Methods: First, regression analysis is applied to find target genes. Genetic algorithm (GA), particle swarm optimization (PSO), support vector machine (SVM), and analysis of variance (ANOVA) are hybridized to select gene markers from target genes. Finally, the improved fuzzy model is applied to classify cancer tissues. Results: The microarray data of ovarian cancer, obtained from China Medical University Hospital, is used to test the performance of the proposed algorithm. In simulation, 200 target genes are obtained after regression analysis and six gene markers are selected from the hybrid process of GA, PCO, SVM and ANOVA. Additionally, these gene markers are used to classify cancer tissues. Conclusions: The proposed algorithm can be used to analyze gene expressions and has superior performance in microarray data of ovarian cancer, and it can be performed on other studies for cancer diagnosis. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 93
页数:13
相关论文
共 53 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [J].
Alon, U ;
Barkai, N ;
Notterman, DA ;
Gish, K ;
Ybarra, S ;
Mack, D ;
Levine, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) :6745-6750
[3]  
[Anonymous], UCI REPOSITORY MACHI
[4]   Randomized maps for assessing the reliability of patients clusters in DNA microarray data analyses [J].
Bertoni, Alberto ;
Valentini, Giorgio .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2006, 37 (02) :85-109
[5]   Minimum information about a microarray experiment (MIAME) - toward standards for microarray data [J].
Brazma, A ;
Hingamp, P ;
Quackenbush, J ;
Sherlock, G ;
Spellman, P ;
Stoeckert, C ;
Aach, J ;
Ansorge, W ;
Ball, CA ;
Causton, HC ;
Gaasterland, T ;
Glenisson, P ;
Holstege, FCP ;
Kim, IF ;
Markowitz, V ;
Matese, JC ;
Parkinson, H ;
Robinson, A ;
Sarkans, U ;
Schulze-Kremer, S ;
Stewart, J ;
Taylor, R ;
Vilo, J ;
Vingron, M .
NATURE GENETICS, 2001, 29 (04) :365-371
[6]   Gene selection for multi-class prediction of microarray data [J].
Chen, DC ;
Hua, D ;
Reifman, J ;
Cheng, XZ .
PROCEEDINGS OF THE 2003 IEEE BIOINFORMATICS CONFERENCE, 2003, :492-495
[7]  
Chu F, 2004, NAFIPS 2004: ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, VOLS 1AND 2, P555
[8]  
Chuang CC, 2005, IEEE SYS MAN CYBERN, P1048
[9]  
Coello CAC, 2004, IEEE T EVOLUT COMPUT, V8, P256, DOI [10.1109/TEVC.2004.826067, 10.1109/tevc.2004.826067]
[10]   Robust clustering methods: A unified view [J].
Dave, RN ;
Krishnapuram, R .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1997, 5 (02) :270-293