Gravitational wave radiometry: Mapping a stochastic gravitational wave background

被引:75
|
作者
Mitra, Sanjit [1 ]
Dhurandhar, Sanjeev [1 ,2 ]
Souradeep, Tarun [1 ]
Lazzarini, Albert [3 ]
Mandic, Vuk [3 ]
Bose, Sukanta [4 ]
Ballmer, Stefan [3 ]
机构
[1] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India
[2] Observ Cote Azur, F-06304 Nice 4, France
[3] CALTECH, LIGO Lab, Pasadena, CA 91125 USA
[4] Washington State Univ, Dept Phys, Pullman, WA 99164 USA
来源
PHYSICAL REVIEW D | 2008年 / 77卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.77.042002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The problem of the detection and mapping of a stochastic gravitational wave background (SGWB), either cosmological or astrophysical, bears a strong semblance to the analysis of the cosmic microwave background (CMB) anisotropy and polarization, which too is a stochastic field, statistically described in terms of its correlation properties. An astrophysical gravitational wave background (AGWB) will likely arise from an incoherent superposition of unmodelled and/or unresolved sources and cosmological gravitational wave backgrounds (CGWB) are also predicted in certain scenarios. The basic statistic we use is the cross correlation between the data from a pair of detectors. In order to "point" the pair of detectors at different locations one must suitably delay the signal by the amount it takes for the gravitational waves (GW) to travel to both detectors corresponding to a source direction. Then the raw (observed) sky map of the SGWB is the signal convolved with a beam response function that varies with location in the sky. We first present a thorough analytic understanding of the structure of the beam response function using an analytic approach employing the stationary phase approximation. The true sky map is obtained by numerically deconvolving the beam function in the integral (convolution) equation. We adopt the maximum likelihood framework to estimate the true sky map using the conjugate gradient method that has been successfully used in the broadly similar, well-studied CMB map-making problem. We numerically implement and demonstrate the method on signal generated by simulated (unpolarized) SGWB for the GW radiometer consisting of the LIGO pair of detectors at Hanford and Livingston. We include "realistic" additive Gaussian noise in each data stream based on the LIGO-I noise power spectral density. The extension of the method to multiple baselines and polarized GWB is outlined. In the near future the network of GW detectors, including the Advanced LIGO and Virgo detectors that will be sensitive to sources within a thousand times larger spatial volume, could provide promising data sets for GW radiometry.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Unified mapmaking for an anisotropic stochastic gravitational wave background
    Suresh, Jishnu
    Ain, Anirban
    Mitra, Sanjit
    PHYSICAL REVIEW D, 2021, 103 (08)
  • [42] ET sensitivity to the anisotropic Stochastic Gravitational Wave Background
    Mentasti, Giorgio
    Peloso, Marco
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (03):
  • [43] Resonant gravitational wave antennas for stochastic background measurements
    Astone, P
    Pallottino, GV
    Pizzella, G
    CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (08) : 2019 - 2030
  • [44] Detecting the stochastic gravitational wave background with the TianQin detector
    Cheng, Jun
    Li, En-Kun
    Hu, Yi-Ming
    Liang, Zheng-Cheng
    Zhang, Jian-dong
    Mei, Jianwei
    PHYSICAL REVIEW D, 2022, 106 (12)
  • [45] Angular resolution of the search for anisotropic stochastic gravitational-wave background with terrestrial gravitational-wave detectors
    Floden, Erik
    Mandic, Vuk
    Matas, Andrew
    Tsukada, Leo
    PHYSICAL REVIEW D, 2022, 106 (02)
  • [46] Primordial gravitational waves of big bounce cosmology in light of stochastic gravitational wave background
    Li, Changhong
    PHYSICAL REVIEW D, 2024, 110 (08)
  • [47] Searching for a stochastic background of gravitational waves with the laser interferometer gravitational-wave observatory
    Abbott, B.
    Abbott, R.
    Adhikari, R.
    Agresti, J.
    Ajith, P.
    Allen, B.
    Amin, R.
    Anderson, S. B.
    Anderson, W. G.
    Araya, M.
    Armandula, H.
    Ashley, M.
    Aston, S.
    Aulbert, C.
    Babak, S.
    Ballmer, S.
    Barish, B. C.
    Barker, C.
    Barker, D.
    Barr, B.
    Barriga, P.
    Barton, M. A.
    Bayer, K.
    Belczynski, K.
    Betzwieser, J.
    Beyersdorf, P.
    Bhawal, B.
    Bilenko, I. A.
    Billingsley, G.
    Black, E.
    Blackburn, K.
    Blackburn, L.
    Blair, D.
    Bland, B.
    Bogue, L.
    Bork, R.
    Bose, S.
    Brady, P. R.
    Braginsky, V. B.
    Brau, J. E.
    Brooks, A.
    Brown, D. A.
    Bullington, A.
    Bunkowski, A.
    Buonanno, A.
    Burman, R.
    Busby, D.
    Byer, R. L.
    Cadonati, L.
    Cagnoli, G.
    ASTROPHYSICAL JOURNAL, 2007, 659 (02): : 918 - 930
  • [48] Measuring the primordial gravitational waves from cosmic microwave background and stochastic gravitational wave background observations
    Li, Jun
    Guo, Guang-Hai
    MODERN PHYSICS LETTERS A, 2022, 37 (10)
  • [49] Cosmology on a gravitational wave background
    Matos, Tonatiuh
    Escamilla, Luis A.
    Hernandez-Marquez, Maribel
    Vazquez, J. Alberto
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 529 (03) : 3013 - 3019
  • [50] Gravitational wave background hints
    不详
    ASTRONOMY & GEOPHYSICS, 2021, 62 (02) : 7 - 7