Gravitational wave radiometry: Mapping a stochastic gravitational wave background

被引:75
|
作者
Mitra, Sanjit [1 ]
Dhurandhar, Sanjeev [1 ,2 ]
Souradeep, Tarun [1 ]
Lazzarini, Albert [3 ]
Mandic, Vuk [3 ]
Bose, Sukanta [4 ]
Ballmer, Stefan [3 ]
机构
[1] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India
[2] Observ Cote Azur, F-06304 Nice 4, France
[3] CALTECH, LIGO Lab, Pasadena, CA 91125 USA
[4] Washington State Univ, Dept Phys, Pullman, WA 99164 USA
来源
PHYSICAL REVIEW D | 2008年 / 77卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.77.042002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The problem of the detection and mapping of a stochastic gravitational wave background (SGWB), either cosmological or astrophysical, bears a strong semblance to the analysis of the cosmic microwave background (CMB) anisotropy and polarization, which too is a stochastic field, statistically described in terms of its correlation properties. An astrophysical gravitational wave background (AGWB) will likely arise from an incoherent superposition of unmodelled and/or unresolved sources and cosmological gravitational wave backgrounds (CGWB) are also predicted in certain scenarios. The basic statistic we use is the cross correlation between the data from a pair of detectors. In order to "point" the pair of detectors at different locations one must suitably delay the signal by the amount it takes for the gravitational waves (GW) to travel to both detectors corresponding to a source direction. Then the raw (observed) sky map of the SGWB is the signal convolved with a beam response function that varies with location in the sky. We first present a thorough analytic understanding of the structure of the beam response function using an analytic approach employing the stationary phase approximation. The true sky map is obtained by numerically deconvolving the beam function in the integral (convolution) equation. We adopt the maximum likelihood framework to estimate the true sky map using the conjugate gradient method that has been successfully used in the broadly similar, well-studied CMB map-making problem. We numerically implement and demonstrate the method on signal generated by simulated (unpolarized) SGWB for the GW radiometer consisting of the LIGO pair of detectors at Hanford and Livingston. We include "realistic" additive Gaussian noise in each data stream based on the LIGO-I noise power spectral density. The extension of the method to multiple baselines and polarized GWB is outlined. In the near future the network of GW detectors, including the Advanced LIGO and Virgo detectors that will be sensitive to sources within a thousand times larger spatial volume, could provide promising data sets for GW radiometry.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Gravitational wave stochastic background in reduced Horndeski theories
    Lobato, Joao C.
    Matos, Isabela S.
    Calvao, Mauricio O.
    Waga, Ioav
    PHYSICAL REVIEW D, 2022, 106 (10)
  • [32] Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background
    Taylor, S. R.
    Mingarelli, C. M. F.
    Gair, J. R.
    Sesana, A.
    Theureau, G.
    Babak, S.
    Bassa, C. G.
    Brem, P.
    Burgay, M.
    Caballero, R. N.
    Champion, D. J.
    Cognard, I.
    Desvignes, G.
    Guillemot, L.
    Hessels, J. W. T.
    Janssen, G. H.
    Karuppusamy, R.
    Kramer, M.
    Lassus, A.
    Lazarus, P.
    Lentati, L.
    Liu, K.
    Oslowski, S.
    Perrodin, D.
    Petiteau, A.
    Possenti, A.
    Purver, M. B.
    Rosado, P. A.
    Sanidas, S. A.
    Smits, R.
    Stappers, B.
    Tiburzi, C.
    van Haasteren, R.
    Vecchio, A.
    Verbiest, J. P. W.
    PHYSICAL REVIEW LETTERS, 2015, 115 (04)
  • [33] Studying the anisotropy of the gravitational wave stochastic background with LISA
    Ungarelli, C
    Vecchio, A
    PHYSICAL REVIEW D, 2001, 64 (12):
  • [34] Astrophysical sources of a stochastic gravitational-wave background
    Regimbau, T.
    Mandic, V.
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (18)
  • [35] Constraining the stochastic gravitational wave background with photometric surveys
    Wang, Yijun
    Pardo, Kris
    Chang, Tzu-Ching
    Dore, Olivier
    PHYSICAL REVIEW D, 2022, 106 (08)
  • [36] A technique to modulate the signature of a stochastic gravitational wave background
    Lazzarini, A
    Finn, LS
    CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (07) : 1485 - 1492
  • [37] Time dependence of the astrophysical stochastic gravitational wave background
    Mukherjee, Suvodip
    Silk, Joseph
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 491 (04) : 4690 - 4701
  • [38] Improved reconstruction of a stochastic gravitational wave background with LISA
    Flauger, Raphael
    Karnesis, Nikolaos
    Nardini, Germano
    Pieroni, Mauro
    Ricciardone, Angelo
    Torrado, Jesus
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (01):
  • [39] Probing anisotropies of the Stochastic Gravitational Wave Background with LISA
    Bartolo, Nicola
    Bertacca, Daniele
    Caldwell, Robert
    Contaldi, Carlo R.
    Cusin, Giulia
    De Luca, Valerio
    Dimastrogiovanni, Emanuela
    Fasiello, Matteo
    Figueroa, Daniel G.
    Franciolini, Gabriele
    Jenkins, Alexander C.
    Peloso, Marco
    Pieroni, Mauro
    Renzini, Arianna
    Ricciardone, Angelo
    Riotto, Antonio
    Sakellariadou, Mairi
    Sorbo, Lorenzo
    Tasinato, Gianmassimo
    Torrado, Jesus
    Clesse, Sebastien
    Kuroyanagi, Sachiko
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (11):
  • [40] Stochastic gravitational-wave background in quantum gravity
    Calcagni, Gianluca
    Kuroyanagi, Sachiko
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (03):